freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

八年級下冊數(shù)學教案新人教版-資料下載頁

2025-06-09 22:25本頁面
  

【正文】 析:勾股定理的使用范圍是在直角三角形中,因此注意要創(chuàng)造直角三角形,作高是常用的創(chuàng)造直角三角形的輔助線做法。欲求高CD,可將其置身于Rt△ADC或Rt△BDC中,但只有一邊已知,根據(jù)等腰三角形三線合一性質(zhì),可求AD=CD=AB=3cm,則此題可解。六、課堂練習1.填空題⑴在Rt△ABC,∠C=90176。,a=8,b=15,則c= 。⑵在Rt△ABC,∠B=90176。,a=3,b=4,則c= 。⑶在Rt△ABC,∠C=90176。,c=10,a:b=3:4,則a= ,b= 。⑷一個直角三角形的三邊為三個連續(xù)偶數(shù),則它的三邊長分別為 。⑸已知直角三角形的兩邊長分別為3cm和5cm,則第三邊長為 。⑹已知等邊三角形的邊長為2cm,則它的高為 ,面積為 。2.已知:如圖,在△ABC中,∠C=60176。,AB=,AC=4,AD是BC邊上的高,求BC的長。 3.已知等腰三角形腰長是10,底邊長是16,求這個等腰三角形的面積。七、課后練習1.填空題在Rt△ABC,∠C=90176。,⑴如果a=7,c=25,則b= 。⑵如果∠A=30176。,a=4,則b= 。⑶如果∠A=45176。,a=3,則c= 。⑷如果c=10,ab=2,則b= 。⑸如果a、b、c是連續(xù)整數(shù),則a+b+c= 。⑹如果b=8,a:c=3:5,則c= 。2.已知:如圖,四邊形ABCD中,AD∥BC,AD⊥DC, AB⊥AC,∠B=60176。,CD=1cm,求BC的長。八、參考答案課堂練習1.17; ; 6,8; 6,8,10; 4或; ,; 2.8; 3.48。課后練習1.24; 4; 3; 6; 12; 10; 2. 18.1 勾股定理(三)一、教學目標1.會用勾股定理解決簡單的實際問題。2.樹立數(shù)形結合的思想。二、重點、難點1.重點:勾股定理的應用。2.難點:實際問題向數(shù)學問題的轉(zhuǎn)化。三、例題的意圖分析例1(教材P74頁探究1)明確如何將實際問題轉(zhuǎn)化為數(shù)學問題,注意條件的轉(zhuǎn)化;學會如何利用數(shù)學知識、思想、方法解決實際問題。例2(教材P75頁探究2)使學生進一步熟練使用勾股定理,探究直角三角形三邊的關系:保證一邊不變,其它兩邊的變化。四、課堂引入勾股定理在實際的生產(chǎn)生活當中有著廣泛的應用。勾股定理的發(fā)現(xiàn)和使用解決了許多生活中的問題,今天我們就來運用勾股定理解決一些問題,你可以嗎?試一試。五、例習題分析例1(教材P74頁探究1)分析:⑴在實際問題向數(shù)學問題的轉(zhuǎn)化過程中,注意勾股定理的使用條件,即門框為長方形,四個角都是直角。⑵讓學生深入探討圖中有幾個直角三角形?圖中標字母的線段哪條最長?⑶指出薄木板在數(shù)學問題中忽略厚度,只記長度,探討以何種方式通過?⑷轉(zhuǎn)化為勾股定理的計算,采用多種方法。⑸注意給學生小結深化數(shù)學建模思想,激發(fā)數(shù)學興趣。例2(教材P75頁探究2)分析:⑴在△AOB中,已知AB=3,AO=,利用勾股定理計算OB。 ⑵ 在△COD中,已知CD=3,CO=2,利用勾股定理計算OD。則BD=OD-OB,通過計算可知BD≠AC。⑶進一步讓學生探究AC和BD的關系,給AC不同的值,計算BD。六、課堂練習1.小明和爸爸媽媽十一登香山,他們沿著45度的坡路走了500米,看到了一棵紅葉樹,這棵紅葉樹的離地面的高度是 米。2.如圖,山坡上兩株樹木之間的坡面距離是4米,則這兩株樹之間的垂直距離是 米,水平距離是 米。 3.如圖,一根12米高的電線桿兩側(cè)各用15米的鐵絲固定,兩個固定點之間的距離是 。4.如圖,原計劃從A地經(jīng)C地到B地修建一條高速公路,后因技術攻關,可以打隧道由A地到B地直接修建,已知高速公路一公里造價為300萬元,隧道總長為2公里,隧道造價為500萬元,AC=80公里,BC=60公里,則改建后可省工程費用是多少?七、課后練習1.如圖,欲測量松花江的寬度,沿江岸取B、C兩點,在江對岸取一點A,使AC垂直江岸,測得BC=50米,∠B=60176。,則江面的寬度為 。2.有一個邊長為1米正方形的洞口,想用一個圓形蓋去蓋住這個洞口,則圓形蓋半徑至少為 米。3.一根32厘米的繩子被折成如圖所示的形狀釘在P、Q兩點,PQ=16厘米,且RP⊥PQ,則RQ= 厘米。4.如圖,鋼索斜拉大橋為等腰三角形,支柱高24米,∠B=∠C=30176。,E、F分別為BD、CD中點,試求B、C兩點之間的距離,鋼索AB和AE的長度。(精確到1米)八、參考答案:課堂練習:1.; 2.6, ;3.18米; 4.11600;課后練習1.米; 2.;3.20; 4.83米,48米,32米;18.1 勾股定理(四)一、教學目標1.會用勾股定理解決較綜合的問題。2.樹立數(shù)形結合的思想。二、重點、難點1.重點:勾股定理的綜合應用。2.難點:勾股定理的綜合應用。三、例題的意圖分析例1(補充)“雙垂圖”是中考重要的考點,熟練掌握“雙垂圖”的圖形結構和圖形性質(zhì),通過討論、計算等使學生能夠靈活應用。目前“雙垂圖”需要掌握的知識點有:3個直角三角形,三個勾股定理及推導式BC2BD2=AC2AD2,兩對相等銳角,四對互余角,及30176?;?5176。特殊角的特殊性質(zhì)等。例2(補充)讓學生注意所求結論的開放性,根據(jù)已知條件,作適當輔助線求出三角形中的邊和角。讓學生掌握解一般三角形的問題常常通過作高轉(zhuǎn)化為直角三角形的問題。使學生清楚作輔助線不能破壞已知角。例3(補充)讓學生掌握不規(guī)則圖形的面積,可轉(zhuǎn)化為特殊圖形求解,本題通過將圖形轉(zhuǎn)化為直角三角形的方法,把四邊形面積轉(zhuǎn)化為三角形面積之差。在轉(zhuǎn)化的過程中注意條件的合理運用。讓學生把前面學過的知識和新知識綜合運用,提高解題的綜合能力。例4(教材P76頁探究3)讓學生利用尺規(guī)作圖和勾股定理畫出數(shù)軸上的無理數(shù)點,進一步體會數(shù)軸上的點與實數(shù)一一對應的理論。四、課堂引入復習勾股定理的內(nèi)容。本節(jié)課探究勾股定理的綜合應用。五、例習題分析例1(補充)1.已知:在Rt△ABC中,∠C=90176。,CD⊥BC于D,∠A=60176。,CD=,求線段AB的長。分析:本題是“雙垂圖”的計算題,“雙垂圖”是中考重要的考點,所以要求學生對圖形及性質(zhì)掌握非常熟練,能夠靈活應用。目前“雙垂圖”需要掌握的知識點有:3個直角三角形,三個勾股定理及推導式BC2BD2=AC2AD2,兩對相等銳角,四對互余角,及30176?;?5176。特殊角的特殊性質(zhì)等。 要求學生能夠自己畫圖,并正確標圖。引導學生分析:欲求AB,可由AB=BD+CD,分別在兩個三角形中利用勾股定理和特殊角,求出BD=3和AD=1?;蛴驛B,可由,分別在兩個三角形中利用勾股定理和特殊角,求出AC=2和BC=6。例2(補充)已知:如圖,△ABC中,AC=4,∠B=45176。,∠A=60176。,根據(jù)題設可知什么?分析:由于本題中的△ABC不是直角三角形,所以根據(jù)題設只能直接求得∠ACB=75176。在學生充分思考和討論后,發(fā)現(xiàn)添置AB邊上的高這條輔助線,就可以求得AD,CD,BD,AB,BC及S△ABC。讓學生充分討論還可以作其它輔助線嗎?為什么?小結:可見解一般三角形的問題常常通過作高轉(zhuǎn)化為直角三角形的問題。并指出如何作輔助線?解略。例3(補充)已知:如圖,∠B=∠D=90176。,∠A=60176。,AB=4,CD=2。求:四邊形ABCD的面積。分析:如何構造直角三角形是解本題的關鍵,可以連結AC,或延長AB、DC交于F,或延長AD、BC交于E,根據(jù)本題給定的角應選后兩種,進一步根據(jù)本題給定的邊選第三種較為簡單。教學中要逐層展示給學生,讓學生深入體會。解:延長AD、BC交于E。∵∠A=∠60176。,∠B=90176。,∴∠E=30176?!郃E=2AB=8,CE=2CD=4,∴BE2=AE2AB2=8242=48,BE==。 ∵DE2= CE2CD2=4222=12,∴DE==?!郤四邊形ABCD=S△ABES△CDE=ABBECDDE=小結:不規(guī)則圖形的面積,可轉(zhuǎn)化為特殊圖形求解,本題通過將圖形轉(zhuǎn)化為直角三角形的方法,把四邊形面積轉(zhuǎn)化為三角形面積之差。例4(教材P76頁探究3)分析:利用尺規(guī)作圖和勾股定理畫出數(shù)軸上的無理數(shù)點,進一步體會數(shù)軸上的點與實數(shù)一一對應的理論。變式訓練:在數(shù)軸上畫出表示的點。六、課堂練習1.△ABC中,AB=AC=25cm,高AD=20cm,則BC= ,S△ABC= 。2.△ABC中,若∠A=2∠B=3∠C,AC=cm,則∠A= 度,∠B= 度,∠C= 度,BC= ,S△ABC= 。3.△ABC中,∠C=90176。,AB=4,BC=,CD⊥AB于D,則AC= ,CD= ,BD= ,AD= ,S△ABC= 。4.已知:如圖,△ABC中,AB=26,BC=25,AC=17,求S△ABC。七、課后練習1.在Rt△ABC中,∠C=90176。,CD⊥BC于D,∠A=60176。,CD=,AB= 。2.在Rt△ABC中,∠C=90176。,S△ABC=30,c=13,且a<b,則a= ,b= 。3.已知:如圖,在△ABC中,∠B=30176。,∠C=45176。,AC=,求(1)AB的長;(2)S△ABC。4.在數(shù)軸上畫出表示-的點。課后反思:八、參考答案:課堂練習:1.30cm,300cm2;2.90,60,30,4,;3.2,3,1,;4.作BD⊥AC于D,設AD=x,則CD=17x,252x2=262(17x)2,x=7,BD=24,S△ABC=ACBD=254;課后練習:1.4; 2.5,12;3.提示:作AD⊥BC于D,AD=CD=2,AB=4,BD=,BC=2+,S△ABC= =2+;4.略。18.2 勾股定理的逆定理(一)一、教學目標1.體會勾股定理的逆定理得出過程,掌握勾股定理的逆定理。2.探究勾股定理的逆定理的證明方法。3.理解原命題、逆命題、逆定理的概念及關系。二、重點、難點1.重點:掌握勾股定理的逆定理及證明。2.難點:勾股定理的逆定理的證明。三、例題的意圖分析例1(補充)使學生了解命題,逆命題,逆定理的概念,及它們之間的關系。例2(P82探究)通過讓學生動手操作,畫好圖形后剪下放到一起觀察能否重合,激發(fā)學生的興趣和求知欲,鍛煉學生的動手操作能力,再通過探究理論證明方法,使實踐上升到理論,提高學生的理性思維。例3(補充)使學生明確運用勾股定理的逆定理判定一個三角形是否是直角三角形的一般步驟:①先判斷那條邊最大。②分別用代數(shù)方法計算出a2+b2和c2的值。③判斷a2+b2和c2是否相等,若相等,則是直角三角形;若不相等,則不是直角三角形。四、課堂引入創(chuàng)設情境:⑴怎樣判定一個三角形是等腰三角形?⑵怎樣判定一個三角形是直角三角形?和等腰三角形的判定進行對比,從勾股定理的逆命題進行猜想。五、例習題分析例1(補充)說出下列命題的逆命題,這些命題的逆命題成立嗎?⑴同旁內(nèi)角互補,兩條直線平行。⑵如果兩個實數(shù)的平方相等,那么兩個實數(shù)平方相等。⑶線段垂直平分線上的點到線段兩端點的距離相等。⑷直角三角形中30176。角所對的直角邊等于斜邊的一半。分析:⑴每個命題都有逆命題,說逆命題時注意將題設和結論調(diào)換即可,但要分清題設和結論,并注意語言的運用。⑵理順他們之間的關系,原命題有真有假,逆命題也有真有假,可能都真,也可能一真一假,還可能都假。解略。例2(P82探究)證明:如果三角形的三邊長a,b,c滿足a2+b2=c2,那么這個三角形是直角三角形。分析:⑴注意命題證明的格式,首先要根據(jù)題意畫出圖形,然后寫已知求證。⑵如何判斷一個三角形是直角三角形,現(xiàn)在只知道若有一個角是直角的三角形是直角三角形,從而將問題轉(zhuǎn)化為如何判斷一個角是直角。⑶利用已知條件作一個直角三角形,再證明和原三角形全等,使問題得以解決。⑷先做直角,再截取兩直角邊相等,利用勾股定理計算斜邊A1B1=c,則通過三邊對應相等的兩個三角形全等可證。⑸先讓學生動手操作,畫好圖形后剪下放到一起觀察能否重合,激發(fā)學生的興趣和求知欲,再探究理論證明方法。充分利用這道題鍛煉學生的動手操作能力,由實踐到理論學生更容易接受。證明略。例3(補充)已知:在△ABC中,∠A、∠B、∠C的對邊分別是a、b、c,a=n2-1,b=2n,c=n2+1(n>1)求證:∠C=90176。分析:⑴運用勾股定理的逆定理判定一個三角形是否是直角三角形的一般步驟:①先判斷那條邊最大。②分別用代數(shù)方法計算出a2
點擊復制文檔內(nèi)容
教學教案相關推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號-1