【總結(jié)】基本不等式的綜合應用基本不等式是人教版高中數(shù)學必修5第三章第四節(jié)的內(nèi)容,在高考中占有很重要的比重。而同學們在使用基本不等式的過程中往往會遇到各種各樣的題型而覺得無從入手?,F(xiàn)結(jié)合教學中實際遇到的問題,淺談利用基本不等式求最值的各類題型的處理方法。題型一:直接利用基本不等式求最值理論依據(jù):(1)當且時,,當且僅當時等號成立,簡記為“和定積最大”(2)當且時,,當且僅當時等號成立,簡
2025-07-23 12:30
【總結(jié)】解不等式方程的方法:(1)設(shè):弄清題意和題目中的數(shù)量關(guān)系,用字母(x、y)表示題目中的未知數(shù);(2)找:找到能夠表示應用題全部含義的一個不等的關(guān)系;(3)列:根據(jù)這個不等的數(shù)量關(guān)系,列出所需的代數(shù)式,從而列出不等式(組);(4)解:解這個所列出的不等式(組),求出未知數(shù)的解集;(5)答:寫出答案,出售時標價為1200元,后來由于商品積壓,商店準備打折出售但要保持利
2025-08-17 07:18
【總結(jié)】不等式的綜合問題典例分析【例1】若實數(shù)、、滿足,則稱比遠離.⑴若比遠離,求的取值范圍;⑵對任意兩個不相等的正數(shù)、,證明:比遠離;⑶已知函數(shù)的定義域.任取,等于和中遠離的那個值.寫出函數(shù)的解析式,并指出它的基本性質(zhì)(結(jié)論不要求證明).
2025-06-07 13:51
【總結(jié)】雙勾函數(shù)與不等式的應用一、雙勾函數(shù)xxy1??下面研究函數(shù)1、定義域:),0()0,(?????2、值域:xxxxy11:12????法?把上式去分母,移項,合并同類項,整理得:012???xyxRx??042?????y解得:??????????22,?y當且僅當x=1時
2024-10-11 21:03
【總結(jié)】摘要凸性是一種重要的幾何性質(zhì),凸函數(shù)在泛函分析,最優(yōu)化理論,,同時討論了凸函數(shù)的幾條常用性質(zhì),最后重點展示了凸函數(shù)在證明不等式中的應用.關(guān)鍵詞:凸函數(shù),凸性,判定定理,不等式AbstractConvexityisanimportantgeometr
2025-06-23 16:21
【總結(jié)】中考復習準備好了嗎?陽泉市義井中學高鐵牛時刻準備著!2020年課程標準及學習目標有的放矢(課標要求)(1)方程與方程組①能夠根據(jù)具體問題中的數(shù)量關(guān)系,列出方程,體會方程是刻畫現(xiàn)實世界的一個有效的數(shù)學模型。②經(jīng)歷用觀察、畫圖或計算器等手段估計方程解的過程。[參A例7]
2024-11-12 02:42
【總結(jié)】張彥潔高級教師2020年名師課堂輔導講座—高中部分pabba22?????pba2min???4222sbaab???????????42maxsab??[學習內(nèi)容]一、求最值:1、若a,b∈R+且ab=p(p為常數(shù))則
2024-11-19 08:49
【總結(jié)】不等式與不等式組專題復習(一)不等式考點1:不等式的定義知識點::用符號“<”“>”“≤”“≥”表示大小關(guān)系的式子叫做不等式。(像a+2≠a-2這樣用“≠”號表示不等關(guān)系的式子也是不等式。):①x是正數(shù),則x>0;②x是負數(shù),則x<0;③x是非負數(shù),則x≥0;④x是非正數(shù),則x≤0;⑤x大于y,則x-y>0;⑥x小于y,則x-y<0;
2025-04-16 12:51
【總結(jié)】指數(shù)、對數(shù)方程與不等式的解法注:以下式子中,若無特別說明,均假設(shè)且.一、知識要點:1、指數(shù)方程的解法:(1)同底去底法:;(2)化成對數(shù)式:;(3)取同底對數(shù):.2、對數(shù)方程的解法:(1)同底去底法:;(2)化成指數(shù)式:;(3)取同底指數(shù):.3、指數(shù)不等式的解法:(1)同底去底法:時,;時,;(2)化成對數(shù)式:時,;
2025-06-25 17:04
【總結(jié)】不等式和不等式組錢旭東淮安市啟明外國語學校蘇科版義務(wù)教育課程標準實驗教科書九年級復習課回顧·知識一元一次不等式(組)的應用一元一次不等式(組)的解法一元一次不等式(組)解集的含義一元一次不等式(組)的概念不等式的性質(zhì)一元一次不等式和一元一次不等式組回顧·知識:含
2024-10-12 13:38
【總結(jié)】張寧中級教師2020年名師課堂輔導講座—高中部分學習內(nèi)容1、不等式的性質(zhì)2、證明不等式的主要依據(jù)①baba????0baba????0②不等式的性質(zhì)學習內(nèi)容③幾個重要不等式ⅰ)(02Raa??ⅱ),(222Rbaabba???ⅲ),(2??
2024-11-18 22:38
【總結(jié)】第一篇:57均值不等式與不等式的實際應用 學案五十七:均值不等式與不等式的實際應用 命題:閆桂女劉麗娟審核:【考綱要求】 1、了解均值不等式的證明過程 2、會用均值不等式解決簡單的最大(?。┲?..
2024-11-03 14:01
【總結(jié)】2006年中考復習專題——方程與不等式【復習內(nèi)容與要求】一、方程和方程組的解法1、知識網(wǎng)絡(luò):1、考點要求:①能夠根據(jù)具體問題中的數(shù)量關(guān)系,列出方程,體會方程是刻畫現(xiàn)實世界的一個有效的數(shù)學模型。②經(jīng)歷用觀察、畫圖或計算器等手段估計方程解的過程。③會解一元一次方程、簡單的二元一次方程組、可化為一元一次方程的分式方程(方程中的分式不超過兩個)。④理解配方法,會用
2025-04-16 22:30
【總結(jié)】不等式與不等式組綜合檢測題一、選擇題1,若-a>a,則a必為()2,已知a<0,-1<b<0,則a,ab,ab2之間的大小關(guān)系是()>ab>ab2>ab2>a>a>ab2D.ab<a<ab23,(
2024-11-12 02:11
【總結(jié)】一次函數(shù)與方程、不等式的關(guān)系一次函數(shù)與一元一次方程的關(guān)系:一般的一元一次方程的解就是一次函數(shù)的圖象與x軸交點的橫坐標。直線與坐標軸的交點坐標的求法:(1)直線與y軸交點的橫坐標是0,當x=0時,一次函數(shù)的函數(shù)值,就是交點的縱坐標,即直線與y軸的交點為();(2)直線與x軸交點的縱坐標是0,故令y=0,得到方程,解方程得,就是直線與x軸交點的橫坐標,即直線與x軸的
2025-05-15 23:39