【總結(jié)】圖像的作法:方法一:“五點(diǎn)法”方法二:圖像變換法復(fù)習(xí)回顧,參數(shù)對函數(shù)的圖像有什么影響?:(1)要得到函數(shù),只需將函數(shù)y=sin2x的圖像作怎樣的變換?
2025-06-06 06:23
【總結(jié)】復(fù)習(xí)回顧1xyo-11.正弦函數(shù)的圖像:-11--12.用“五點(diǎn)法”作正弦函數(shù)在區(qū)間的簡圖:§8函數(shù)的圖象(一)問題探究一:
【總結(jié)】伸長(A1)縮短(0A1)圖象上所有點(diǎn)的縱坐標(biāo)到原來的A倍(橫坐標(biāo)不變)得到的圖象.y=sinx圖象上的所有點(diǎn)平行移動個單位長度而得到
【總結(jié)】陜西省吳堡縣吳堡中學(xué)高中數(shù)學(xué)第二章從位移、速度、力到向量教學(xué)設(shè)計北師大版必修4本節(jié)課的內(nèi)容是北師大版數(shù)學(xué)必修4,第二章《平面向量》的引言和第一節(jié)《從位移、速度、力到向量》兩部分,所需課時為1課時。一、教材分析向量是近代數(shù)學(xué)最重要和最基本的數(shù)學(xué)概念之一,它是溝通代數(shù)、幾何與三角函數(shù)的橋梁,對更新和完善中學(xué)數(shù)學(xué)知識結(jié)構(gòu)起著重要的作用。向量集
2024-11-19 18:39
【總結(jié)】小結(jié)復(fù)習(xí)一、本章內(nèi)容結(jié)構(gòu)任意角的概念角度制與弧度制弧長與扇形面積公式應(yīng)用任意角的三角函數(shù)計算與化簡、證明恒等式應(yīng)用三角函數(shù)的圖象和性質(zhì)誘導(dǎo)公式應(yīng)用三角函數(shù)的簡單應(yīng)用二、知識要點(diǎn):正角:按逆時針方向旋轉(zhuǎn)形成的角負(fù)角:按順時針方向旋轉(zhuǎn)形成的角零角:、象限角::(1)
2025-06-06 06:26
【總結(jié)】復(fù)習(xí)回顧的簡圖.,請說出是哪五個關(guān)鍵點(diǎn)?它們的坐標(biāo)分別是什么?1xyo-1§5正弦函數(shù)的性質(zhì)與圖像(二)1xyo-1(1)定義域:R(2)值域:[-1,1](3)周期性:(4)奇偶性:奇函數(shù)正弦函數(shù)的對稱中心
【總結(jié)】第二章平面向量,第一頁,編輯于星期六:點(diǎn)三十二分。,§1從位移、速度、力到向量1.1位移、速度和力1.2向量的概念,第二頁,編輯于星期六:點(diǎn)三十二分。,,自主學(xué)習(xí)梳理知識,課前基礎(chǔ)梳理,第三頁,編輯于...
2024-10-22 18:47
【總結(jié)】:三角問題幾何問題復(fù)習(xí)回顧:oxy1PM的終邊MP§5正弦函數(shù)的性質(zhì)與圖像(一)oxy1PM的終邊正弦函數(shù)有以下性質(zhì):(1)定義域:R(2)值域:[-1,1](3)最值:當(dāng)x=______________時,
【總結(jié)】§2兩角和與差的三角函數(shù)(四)一.典型例題分析例求求例且例求練習(xí)1:(1)已知求
【總結(jié)】復(fù)習(xí)回顧思考:§(一)思考:0(1)公式的正用:例求練習(xí),3.例△ABC中,已知AB=AC=2BC(如圖),求∠A的正弦值.ABC解:作AD⊥BC于D,D設(shè)∠BAD=θ,那么∠A=2θ.(
【總結(jié)】復(fù)習(xí)回顧思考:公式C'2α有哪些變形形式?升冪縮角公式:降冪擴(kuò)角公式:§3二倍角的三角函數(shù)(二)1.例題與練習(xí)例:歸納:(1)降冪擴(kuò)角公式:(2)升冪縮角公式:例:注意:根號前的符號由α/2所在象限相應(yīng)的三角函數(shù)值的符號確定,如果α/2所在象限無法確定,則應(yīng)保留根
【總結(jié)】復(fù)習(xí)回顧升冪縮角公式:降冪擴(kuò)角公式:半角公式:萬能公式:“±”由所在象限原函數(shù)的符號來確定.與練習(xí)§3二倍角的三角函數(shù)(三)例:1例R的圓形木料截成長方形(如圖),應(yīng)怎樣截取,才能使長方形面積最大?OABR解:如圖,設(shè)圓心為O,長方形面積為S,∠AOB=α.
【總結(jié)】第二章平面向量,第一頁,編輯于星期六:點(diǎn)三十三分。,§2從位移的合成到向量的加法2.1向量的加法,第二頁,編輯于星期六:點(diǎn)三十三分。,,自主學(xué)習(xí)梳理知識,課前基礎(chǔ)梳理,第三頁,編輯于星期六:點(diǎn)三十三分...
2024-10-22 18:49
【總結(jié)】復(fù)習(xí)回顧、余弦公式::、余弦、正切公式的靈活運(yùn)用:(1)公式的正用、逆用、變形運(yùn)用;(2)角的變換、單角化復(fù)角、復(fù)角化單角的變形運(yùn)用.§2兩角和與差的三角函數(shù)(三)例:證明:左邊==右邊∴等式成立.練習(xí):歸納:在三角恒等變形時,要注意(1)角的變形,如拆角或并角;(2)公式的正用、逆用及
【總結(jié)】復(fù)習(xí)回顧、余弦公式:、余弦公式的靈活運(yùn)用:(1)公式的正用和逆用;(2)角的變換、單角化復(fù)角、復(fù)角化單角的變形運(yùn)用.§2兩角和與差的三角函數(shù)(二)注意!解:原式例:注意!公式的逆向運(yùn)用.例、差角公式求的值.練習(xí),2.解:原式例