【總結(jié)】復(fù)習(xí)回顧tanα1sinαcosαcotαsecαcscα(1)平方關(guān)系:(2)商數(shù)關(guān)系:(3)倒數(shù)關(guān)系:§1同角三角函數(shù)的基本關(guān)系(二)、求值例:練習(xí):解:原式=例:練習(xí):解:原式=例sinθ,cosθ是關(guān)于x的方程x2-ax+a=0的兩個根(a∈R).(1)求sin3
2025-06-06 06:25
【總結(jié)】復(fù)習(xí)回顧:(1)向量:(2)向量的大?。杭粗赶蛄康拈L度(或稱模),記作:長度為零的向量叫做零向量,記作:;長度為1個單位長度的向量叫做單位向量.(3)平行向量:方向相同或相反的非零向量;規(guī)定:零向量與任何向量平行.平行向量也叫做共線向量;任一向量與自身平行.(4)相等向量:相等的
2025-06-06 06:24
【總結(jié)】復(fù)習(xí)回顧思考:§(一)思考:0(1)公式的正用:例求練習(xí),3.例△ABC中,已知AB=AC=2BC(如圖),求∠A的正弦值.ABC解:作AD⊥BC于D,D設(shè)∠BAD=θ,那么∠A=2θ.(
2025-06-06 06:26
【總結(jié)】復(fù)習(xí)回顧升冪縮角公式:降冪擴(kuò)角公式:半角公式:萬能公式:“±”由所在象限原函數(shù)的符號來確定.與練習(xí)§3二倍角的三角函數(shù)(三)例:1例R的圓形木料截成長方形(如圖),應(yīng)怎樣截取,才能使長方形面積最大?OABR解:如圖,設(shè)圓心為O,長方形面積為S,∠AOB=α.
【總結(jié)】復(fù)習(xí)回顧、余弦公式::、余弦、正切公式的靈活運(yùn)用:(1)公式的正用、逆用、變形運(yùn)用;(2)角的變換、單角化復(fù)角、復(fù)角化單角的變形運(yùn)用.§2兩角和與差的三角函數(shù)(三)例:證明:左邊==右邊∴等式成立.練習(xí):歸納:在三角恒等變形時,要注意(1)角的變形,如拆角或并角;(2)公式的正用、逆用及
【總結(jié)】提出問題:是否成立?為什么?復(fù)習(xí)回顧:特別當(dāng)時,P1§2兩角和與差的三角函數(shù)(一)一、兩角差的余弦函數(shù)oxycos(α-β)=?P2(Cα-β):注:公式中的角具有任意性!二、兩角和與差的正弦、余弦函數(shù)兩角和的余弦公式:兩角差的余弦公式:兩角和的正弦公式:兩角差的正
【總結(jié)】在物理中位移與速度的關(guān)系:s=vt,實例分析1:力與加速度的關(guān)系:f=ma.其中位移、速度,力、加速度都是向量,而時間、質(zhì)量都是數(shù)量.為什么我們先看到閃電,后看聽到雷聲?光速大小約為聲速的×105倍實例分析2:§3從速度的倍數(shù)到數(shù)乘向量(一)已知非零
【總結(jié)】復(fù)習(xí)回顧(1)a與b的夾角:共同的起點(diǎn)(2)向量夾角的范圍:[0o,180o](3)向量垂直:(4)兩個非零向量的數(shù)量積:幾何意義:規(guī)定:零向量與任意向量的數(shù)量積為0,即數(shù)量積等于的長度與在的方向上的投影的乘積.
【總結(jié)】第三章三角恒等變形恒等變形能力是數(shù)學(xué)學(xué)習(xí)和應(yīng)用的一項重要的基本功.基本的三角恒等變形公式是實踐中經(jīng)常使用的工具.在力學(xué)、物理、電氣工程、機(jī)械制造、圖像處理以及其他科學(xué)研究和工程實踐中經(jīng)常會用到這些公式.本章我們將學(xué)習(xí)基本的三角恒等變形公式及其簡單應(yīng)用,并通過實例加深對三角恒等變形的理解.提高自己運(yùn)用三角恒等變形公式的能力
【總結(jié)】第二章平面向量在現(xiàn)實世界中,我們遇到的量有兩類:一類是只有大小的數(shù)量;另一類是既有大小、又有方向的量.向量是數(shù)學(xué)中的重要內(nèi)容之一.本章我們將學(xué)習(xí)向量的概念、運(yùn)算、坐標(biāo)表示,以及在數(shù)學(xué)、物理和日常生活中的簡單應(yīng)用.貓能捉住老鼠嗎?東南AB速度是既有大小又有方向的量?老鼠由A向東北方向以每秒6米的速
【總結(jié)】小結(jié)復(fù)習(xí)一、本章內(nèi)容結(jié)構(gòu)任意角的概念角度制與弧度制弧長與扇形面積公式應(yīng)用任意角的三角函數(shù)計算與化簡、證明恒等式應(yīng)用三角函數(shù)的圖象和性質(zhì)誘導(dǎo)公式應(yīng)用三角函數(shù)的簡單應(yīng)用二、知識要點(diǎn):正角:按逆時針方向旋轉(zhuǎn)形成的角負(fù)角:按順時針方向旋轉(zhuǎn)形成的角零角:、象限角::(1)
【總結(jié)】力的做功問題θsF一個物體在力F的作用下產(chǎn)生的位移s,那么力F所做的功應(yīng)當(dāng)怎樣計算?其中力F和位移s是向量,是F與s的夾角,而功W是數(shù)量.F2F1當(dāng)時,W0,即力F做正功;當(dāng)時,W=0,即力F的方向與位移
【總結(jié)】"【志鴻全優(yōu)設(shè)計】2021-2021學(xué)年高中數(shù)學(xué)質(zhì)與圖像課后訓(xùn)練北師大版必修4"1.函數(shù)y=-sin2x,x∈R是().A.最小正周期為π的奇函數(shù)B.最小正周期為π的偶函數(shù)C.最小正周期為2π的奇函數(shù)D.最小正周期為2π的偶函數(shù)2.函數(shù)y=1-sinx,x∈[
2024-12-03 03:15
【總結(jié)】第一章三角函數(shù),第一頁,編輯于星期六:點(diǎn)二十八分。,§5正弦函數(shù)的圖像與性質(zhì)5.1正弦函數(shù)的圖像,第二頁,編輯于星期六:點(diǎn)二十八分。,,自主學(xué)習(xí)梳理知識,課前基礎(chǔ)梳理,第三頁,編輯于星期六:點(diǎn)二十八分...
2024-10-22 18:36
【總結(jié)】第一章三角函數(shù),第一頁,編輯于星期六:點(diǎn)二十八分。,§5正弦函數(shù)的圖像與性質(zhì)5.2正弦函數(shù)的性質(zhì),第二頁,編輯于星期六:點(diǎn)二十八分。,,自主學(xué)習(xí)梳理知識,課前基礎(chǔ)梳理,第三頁,編輯于星期六:點(diǎn)二十八分...