freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

冪函數(shù)、反函數(shù)與函數(shù)的性質(zhì)復(fù)習(xí)教案-資料下載頁(yè)

2025-04-27 12:39本頁(yè)面
  

【正文】 設(shè)對(duì)于任意a∈[-1,1],函數(shù)f ( x ) = x2 + (a-4)x + 4-2a的值總大于0,那么x的取值范圍是( ).(A) (1,3)(B) (-∞,1)(3,+∞)(C) (1,2)(D) (-∞,1)(2,+∞)(6)已知f ( x )為二次函數(shù),且f (x+1) + f (x-1) =2x2-4x,那么的值=___________________.(7)函數(shù)y = f ( x )的圖象關(guān)于直線x = 1對(duì)稱(chēng),當(dāng)x≤1時(shí),f ( x ) = (x + 1)2-1,那么當(dāng)x 1時(shí),f ( x )的解析式為_(kāi)______________________.(8)若函數(shù)f ( x ) = mx2+2mx +1的區(qū)間 [-3,2]上的最大值為4,求實(shí)數(shù)m的值.(9)在測(cè)量某物理量的過(guò)程中,因儀器和觀測(cè)的誤差,使得n次測(cè)量分別得到a1,a2,…,an共n個(gè)數(shù)據(jù),我們規(guī)定所測(cè)量的物理量的“最佳近似值”a是這樣一個(gè)量:與其他近似值比較,a與各數(shù)據(jù)的差的平方和最小.依此規(guī)定,從a1,a2,…,a1推出的a =________.答案或提示(1) A.由 f ( x )+ g ( x ) =-x2+2x-3,∴ f (-x )+ g (-x ) =-(-x)2+2(-x)-3,∴ -f ( x )+ g ( x ) =-x2-2x-3,∴ f ( x )- g ( x ) = x2+2x + 3 .(2) D.作為選擇題,可對(duì)a = 0,-3,-2作檢驗(yàn)后作選擇.對(duì)f ( x )單調(diào)性作研究,則應(yīng)注意分a 0,a = 0,a 0三種情況考慮,可得a = 0或(3) C.討論f ( x )圖象的對(duì)稱(chēng)軸相對(duì)于區(qū)間 [ 0,3 ]的位置,可得 或 或 由此解得 a = -2 .(4) B.由于函數(shù)y = 3-x(x 0)的值域?yàn)椋?,+∞)故令 可得 ,即 .(5) B.把f ( x ) = x2 + (a-4)x + 4-2a變形后得:a (x-2) + x2-4x + 4 = g ( a ),且a∈[-1,1].本題即g ( a )在[-1,1]上最小值 0,即 或 由此可解得x 3或x 1.(6) 0.設(shè)f ( x ) = ax2+bx +c(a≠0),則 f (x+1) + f (x-1) = a (x +1)2+b(x +1)+ c+ a (x-1)2+b(x -1)+ c = 2ax2+2bx+2a+2c =2x2-4x.∴ a = 1,b =-2,c=-1.∴ f ( x ) = x2-2x-1= (x-1)2-2,.(7) (x-3)2-1 .∵ 點(diǎn)(x,y)關(guān)于直線x = 1的對(duì)稱(chēng)點(diǎn)的坐標(biāo)為 (2-x,y).于是x 1時(shí),f ( x ) = [(2-x)+1]2-1= (x-3)2-1.(8)f ( x ) = m ( x + 1)2 + 1-m .當(dāng)m 0時(shí),f ( x ) 最大值為f ( 2 ) ,由f ( 2 ) = 4可得 .當(dāng)m 0時(shí),f ( x ) 的最大值為f (-1 ) ,由f (-1 ) = 4可得m =-3.于是m的值為或-3.(9) (a1 + a2 +…+ an).依題意,這里求使f ( a ) = (a-a1)2+(a-a2)2+…+(a-an)2取最小值時(shí),a的值.由于 f ( a ) = na2-2(a1 + a2 +…+ an)a +,n∈N,故當(dāng) (a1 + a2 +…+ an)時(shí),f ( a )最?。疁y(cè)試題:滿分100分,時(shí)間45分鐘一、選擇題(每題7分)1.,的大小關(guān)系是( )(A) cab(B) acb(C) bac(D) cba2函數(shù)f (x)=(x-1)2+2,g (x)=x2-1,則f [g (x)] ( )(A) 在[-2,0]上是增函數(shù)(B) 在上是增函數(shù)(C) 在[0,2]上是減函數(shù)(D) 在上是增函數(shù)3.已知函數(shù),則它是( )(A) 奇函數(shù)(B) 偶函數(shù)(C) 既是奇函數(shù)又是偶函數(shù)(D) 既不是奇函數(shù)又不是偶函數(shù)4.下列函數(shù)中,一定不存在的函數(shù)是( )(A) 既是奇函數(shù)又是偶函數(shù)(B) 即是奇函數(shù)又是減函數(shù)(C) 即是偶函數(shù)又有反函數(shù)(x≠0)(D) 兩個(gè)互為反函數(shù)的函數(shù)是同一函數(shù)5.設(shè)函數(shù)f (x)是R上的偶函數(shù),且在(-∞,0)上是增函數(shù),已知x10,x20,| x1|| x2|,那么( )(A) f (-x1)f (-x2)(B) f (-x1)= f (-x2)(C) f (-x1) f (-x2)(D) f (-x1)與f (-x2)大小不能確定二、填空題(每題7分)6.已知f (x)是奇函數(shù),當(dāng)x≥0時(shí),f (x)=x2-2x,則當(dāng)x0時(shí),f (x)的表達(dá)式為_(kāi)________7.函數(shù)y=|x|(1-x)的單調(diào)增區(qū)間為_(kāi)_________,單調(diào)減區(qū)間為_(kāi)____________8.函數(shù)和的圖象關(guān)于直線y=x對(duì)稱(chēng), ,則___三、解答題(共44分)9.求證f (x)=(x-1)3在R上是增函數(shù).10.設(shè)函數(shù)y=f (x)是定義在(-1,1)上的奇函數(shù),且在上是減函數(shù),若f (t-1)+f (2t-1)0,求t的取值范圍.11.已知f (x)是R→R+的函數(shù),且f (x+y)=f (x)f (y) (x、y∈R).(1) 求f (0);(2) 求f (x)與f (-x)的關(guān)系;(3) 證明是奇函數(shù).測(cè)試題答案:一、1.D 2.B 3.A 4 C 5.C二、6.-x2-2x 7.;和 8.x2+2 (x≤0).三、9.證明:設(shè)xx2∈R,且x1 x2,則f (x1)-f (x2)=( x1-1)3-(x2-1)3=( x1-x2) [(x1-1)2+( x1-1)( x2-1)+( x2-1)2]∵ x1 x2,∴ x1-x20.又若x2≠1時(shí),.而當(dāng)x2=1時(shí),則x1x2=1,∴ x1-1≠0,則有.因而,總有∴ f (x1)-f (x2)0,即f (x1)f (x2)故函數(shù)f (x)在R上是增函數(shù).10.解:由已知,有f (t-1)=-f (1-t)則原不等式變?yōu)閒 (2t-1)- f (t-1)=f (1-t) (*)∵ f (x)是(-1,1)上的奇函數(shù),且在是減函數(shù),∴ f (x)在(-1,1)上是減函數(shù).(*)式等價(jià)于解得,.故t的取值范圍是.11.(1) 解:令x=0,y=0,則f (0)=[f (0)]2∴ f (0)=0或f (0)=1.∵ 函數(shù)f (x)的值域?yàn)镽+,∴ f (0)=0應(yīng)舍去,故f (0)=1.(2) 解:令y=-x,則f (x-x)=f (x)f (-x),即f (0)= f (x)f (-x),∴ f (x)f (-x)=1.(3) 證:函數(shù)g (x)的定義域是f (x)≠1的x值,設(shè)為A.則對(duì)任意x∈A,則f (-x)≠1,否則(2)不成立.因而-x∈A,于是有 ∴ 函數(shù)g (x)是奇函數(shù).
點(diǎn)擊復(fù)制文檔內(nèi)容
教學(xué)教案相關(guān)推薦
文庫(kù)吧 www.dybbs8.com
備案圖鄂ICP備17016276號(hào)-1