【總結(jié)】,而在考試尤其是高考中數(shù)列題目大多數(shù)又比較難,有的題目很難、很復(fù)雜,顯示出很大的反差。使得在學(xué)習(xí)數(shù)列時(shí)感到很困難。同時(shí),數(shù)列題目種類(lèi)繁多,很難歸類(lèi)。為了便于研究數(shù)列問(wèn)題,找出其中某些常見(jiàn)數(shù)列題目的解題思路、規(guī)律、方法,現(xiàn)把一些常見(jiàn)的數(shù)列通項(xiàng)公式的求法作以下歸類(lèi)。.一、作差求和法m例1在數(shù)列{}中,,,求通項(xiàng)公式.解:原遞推式可化為:則,……,逐項(xiàng)相加
2025-08-23 21:37
【總結(jié)】數(shù)列求和的基本方法和技巧利用下列常用求和公式求和是數(shù)列求和的最基本最重要的方法.1、等差數(shù)列求和公式:2、等比數(shù)列求和公式:3、自然數(shù)列4、自然數(shù)平方組成的數(shù)列[例1]已知,求的前n項(xiàng)和.解:由由等比數(shù)列求和公式得(利用常用公式)
2025-06-27 23:13
【總結(jié)】:(1)觀察法:如:(1),,,……(2)21,203,2005,20007,……(2)化歸法:通過(guò)對(duì)遞推公式的變換轉(zhuǎn)化成等差數(shù)列或等比數(shù)列。①遞推式為及(為常數(shù)):直接運(yùn)用等差(比)數(shù)列。②遞推式為:迭加法如:已知中,,求③遞推式為:迭乘法如:已知中,,求④遞推式為(為常數(shù)):構(gòu)造法:Ⅰ、由相減得,則為等比數(shù)列。Ⅱ、設(shè),得到,,則為等比數(shù)列
2025-08-18 17:17
【總結(jié)】完美WORD格式資料競(jìng)賽輔導(dǎo)數(shù)列(等差數(shù)列與等比數(shù)列)數(shù)列是高中數(shù)學(xué)中的一個(gè)重要課題,也是數(shù)學(xué)競(jìng)賽中經(jīng)常出現(xiàn)的問(wèn)題。數(shù)列最基本的是等差數(shù)列與等比數(shù)列。所謂數(shù)列,就是按一定次序排列的一列數(shù)。如果數(shù)列{an}的第n項(xiàng)an與項(xiàng)數(shù)(下標(biāo))n之間的函數(shù)關(guān)系可
2025-04-07 03:00
【總結(jié)】數(shù)列題型一:求值類(lèi)的計(jì)算題(多關(guān)于等差等比數(shù)列) A)根據(jù)基本量求解(方程的思想) 1、已知為等差數(shù)列的前項(xiàng)和,,求; 2、等差數(shù)列中,且成等比數(shù)列,求數(shù)列前20項(xiàng)的和.3、設(shè)是公比為正數(shù)的等比數(shù)列,若,求數(shù)列前7項(xiàng)的和. 4、已知四個(gè)實(shí)數(shù),前三個(gè)數(shù)成等差數(shù)列,后三個(gè)數(shù)成等比數(shù)列,首末兩數(shù)之和為,中間兩數(shù)之和為,求這四個(gè)數(shù). B)根據(jù)數(shù)列的性質(zhì)求解 1、已知為等
2025-08-08 19:22
【總結(jié)】1等差數(shù)列求和公式:(1)Sn=n(a1+an)/2(2)Sn=na1+n(n-1)d/22等比數(shù)列求和公式:(1)Sn=1-qa1(1-qn)q≠1q≠1(2)Sn=1-qa1-anq當(dāng)q=1時(shí),Sn=na1{an}是公差為d的等差數(shù)列{bn}是公比為q的等比數(shù)列性質(zhì)1
2025-01-13 12:04
【總結(jié)】2016屆文科人教版數(shù)學(xué)數(shù)列姓 名: 院、系: 數(shù)學(xué)學(xué)院?! I(yè):數(shù)學(xué)與應(yīng)用數(shù)學(xué)2015年10月25日第三章數(shù)列第一教時(shí)教材:數(shù)列、數(shù)列的通項(xiàng)公式目的:要求學(xué)生理解數(shù)列的概念及其幾何表示,理解什么叫數(shù)列的通項(xiàng)公式,給出一些數(shù)列能夠?qū)懗銎渫?xiàng)公式,已知通項(xiàng)公
2025-04-17 13:03
【總結(jié)】菜單課后作業(yè)典例探究·提知能自主落實(shí)·固基礎(chǔ)高考體驗(yàn)·明考情新課標(biāo)·文科數(shù)學(xué)(安徽專用)第五節(jié)數(shù)列的綜合應(yīng)用菜單
2025-01-06 16:33
【總結(jié)】數(shù)列1、等差數(shù)列與等比數(shù)列:常設(shè)首項(xiàng)、(公差)比為基本量,借助于消元思想及解方程組思想等。轉(zhuǎn)化為“基本量”是解決問(wèn)題的基本方法。1)若數(shù)列是等差數(shù)列,則數(shù)列是等比數(shù)列,公比為,其中是常數(shù),是的公差。(a0且a≠1);2)若數(shù)列是等比數(shù)列,且,則數(shù)列是等差數(shù)列,公差為,其中是常數(shù)且,是的公比。3)若既是等差數(shù)列又是等比數(shù)列,則是非零常數(shù)數(shù)列。等
2025-07-23 11:20
【總結(jié)】第2課時(shí) 等差數(shù)列及其前n項(xiàng)和1.理解等差數(shù)列的概念.2.掌握等差數(shù)列的通項(xiàng)公式與前n項(xiàng)和公式.3.能在具體的問(wèn)題情境中識(shí)別數(shù)列的等差關(guān)系,并能用等差數(shù)列的有關(guān)知識(shí)解決相應(yīng)的問(wèn)題.4.了解等差數(shù)列與一次函數(shù)的關(guān)系. [對(duì)應(yīng)學(xué)生用書(shū)P83]【梳理自測(cè)】一、等差數(shù)列的概念1.在等差數(shù)列{an}中,已知a1=1,a2+a3=
2025-06-08 00:37
【總結(jié)】數(shù)列知識(shí)結(jié)構(gòu)數(shù)列數(shù)列的數(shù)列數(shù)列數(shù)列方法要點(diǎn)?1.本單元的主要內(nèi)容是數(shù)列的有關(guān)概念和兩種特殊數(shù)列——等差、等比數(shù)列.其中重點(diǎn)是等差數(shù)列與等比數(shù)列的概念與性質(zhì)、數(shù)列通項(xiàng)、前n項(xiàng)和的求法以及數(shù)列知識(shí)在實(shí)際方面的應(yīng)用.?
2025-01-06 16:35
【總結(jié)】1數(shù)列求和的常用方法數(shù)列求和是數(shù)列的重要內(nèi)容之一,也是高考數(shù)學(xué)的重點(diǎn)考查對(duì)象。數(shù)列求和的基本思路是,抓通項(xiàng),找規(guī)律,套方法。下面介紹數(shù)列求和的幾種常用方法:一、直接(或轉(zhuǎn)化)由等差、等比數(shù)列的求和公式求和利用下列常用求和公式求和是數(shù)列求和的最基本最重要的方法.1、等差數(shù)列求和公式:dnnnaaanSnn2)1(2)(11
2024-12-17 15:19
【總結(jié)】-1-高中數(shù)列知識(shí)點(diǎn)總結(jié)(一)等差數(shù)列的公式及性質(zhì)1.等差數(shù)列的定義:dan??1(d為常數(shù))(2?n);2.等差數(shù)列通項(xiàng)公式:*1()()adN????,首項(xiàng):1a,公差:d,末項(xiàng):na推廣:man)(??.從而mn;3.等差數(shù)列的判定方法(1)定義法:若dn??1或dan???1(常數(shù)?)
2025-08-04 18:08
【總結(jié)】第三章數(shù)列第一教時(shí)教材:數(shù)列、數(shù)列的通項(xiàng)公式目的:要求學(xué)生理解數(shù)列的概念及其幾何表示,理解什么叫數(shù)列的通項(xiàng)公式,給出一些數(shù)列能夠?qū)懗銎渫?xiàng)公式,已知通項(xiàng)公式能夠求數(shù)列的項(xiàng)。過(guò)程:一、從實(shí)例引入(P110)1.堆放的鋼管4,5,6,7,8,9,102.正整數(shù)的倒數(shù)3.4.-1的正整數(shù)次冪:-1,1,-1,1,…5.
【總結(jié)】等比數(shù)列復(fù)習(xí):(1)什么叫等差數(shù)列?(2)等差數(shù)列的通項(xiàng)公式是什么?如果一個(gè)數(shù)列從第2項(xiàng)起,每一項(xiàng)與它前一項(xiàng)的差等于同一個(gè)常數(shù),那么這個(gè)數(shù)列就叫做等差數(shù)列.其表示為:an=a1+(n-1)d)2,(1????nddaann為常數(shù)(3)在等差數(shù)列{an}中,若m+n=p+q(m,n,p,q是正整數(shù)),
2025-01-06 16:31