【總結(jié)】平面向量的坐標(biāo)一、教學(xué)目標(biāo):(1)掌握平面向量正交分解及其坐標(biāo)表示.(2)會用坐標(biāo)表示平面向量的加、減及數(shù)乘運算.(3)理解用坐標(biāo)表示的平面向量共線的條件.教材利用正交分解引出向量的坐標(biāo),在此基礎(chǔ)上得到平面向量線性運算的坐標(biāo)表示及向量平行的坐標(biāo)表示;最后通過講解例題,鞏固知識結(jié)論,培養(yǎng)學(xué)生應(yīng)用能力.通過本節(jié)內(nèi)
2024-11-19 23:18
【總結(jié)】第3講平面向量的數(shù)量積【高考會這樣考】1.考查平面向量數(shù)量積的運算.2.考查利用數(shù)量積求平面向量的夾角、模.3.考查利用數(shù)量積判斷兩向量的垂直關(guān)系.【復(fù)習(xí)指導(dǎo)】本講復(fù)習(xí)時,應(yīng)緊扣平面向量數(shù)量積的定義,理解其運算法則和性質(zhì),重點解決平面向量的數(shù)量積的有關(guān)運算,利用數(shù)量積求解平面向量的夾角、模,以及兩向量的垂直關(guān)系.
2025-08-22 12:47
【總結(jié)】階段性檢測卷(二)(時間:120分鐘滿分:150分)一、選擇題(本大題共有10個小題,每小題5分,共50分)→+AC→-BC→+BA→,化簡后等于()A.3AB→→→→解析AB→+AC→-BC→+BA→
2024-12-05 01:55
【總結(jié)】【金榜教程】2021年高中數(shù)學(xué)第二章平面向量單元質(zhì)量評估北師大版必修4(120分鐘150分)一、選擇題(本大題共12小題,每小題5分,共60分,在每小題給出的四個選項中,只有一項是符合題目要求的)1.(20212慈溪高一檢測)已知ABuur=(3,0),則|ABuur|等于()(A)2
2024-12-03 03:13
【總結(jié)】精品資源第五章平面向量1、非零向量不共線,若+=,-=,則⊥是||=||的() A、充要條件 B、充分不必要條件 C、必要不充分條件 D、既不充分又不必要條件1、A【思路分析】法一:⊥?=(+)?(-)=||2-||2=0||=||法二:作,,以,為鄰邊作平行四邊形OACB,則=,=.⊥為菱形||=||
2025-06-24 19:18
【總結(jié)】第二章隨機向量?§多元分布?§數(shù)字特征?§歐氏距離和馬氏距離?*§隨機向量的變換?*§特征函數(shù)1§多元分布?一、多元概率分布函數(shù)?*二、兩個常用的離散型多元分布????2一、多元概
2025-08-01 13:04
【總結(jié)】第三節(jié)平面向量的數(shù)量積及平面向量的應(yīng)用舉例基礎(chǔ)梳理(1)定義已知兩個向量a和b,作=a,=b,則∠AOB=θ叫做向量a與b的夾角.(2)范圍向量夾角θ的取值范圍是,a與b同向時,夾角θ=
2024-11-12 16:44
【總結(jié)】平面向量測試題1.以下說法錯誤的是(?。〢.零向量與任一非零向量平行2.下列四式不能化簡為的是( )A. B.C. D.3.已知=(3,4),=(5,12),與則夾角的余弦為()A.B.C.
2025-06-25 15:44
【總結(jié)】專題五:平面向量專題備考指導(dǎo)及考情分析:平面向量是高中數(shù)學(xué)的重要內(nèi)容,它是銜接代數(shù)與幾何的橋梁和紐帶,向量、向量法在其他章節(jié)內(nèi)容中的穿插、滲透和融合,是高考數(shù)學(xué)試題中的一道靚麗的風(fēng)景,綜觀2022年全國各地高考試卷,對平面向量的考查主要包括以下三個層次:(1)考查平面向量的性質(zhì)和運算法則,以及基本運算技能;(2)考查向
2025-08-16 02:00
【總結(jié)】......平面向量單元測試題第1卷(選擇題)一、選擇題:(本大題共12小題,每小題4分,,只有一項符合題目要求)1.在矩形ABCD中,O是對角線的交點,若= ?。ā 。?A. B. C. D.2.化簡的結(jié)果是 (
2025-03-25 01:22
【總結(jié)】2021高中數(shù)學(xué)第二章平面向量綜合檢測A新人教A版必修4一.選擇題1.以下說法錯誤的是()A.零向量與任一非零向量平行2.下列四式不能化簡為AD的是()A.;)++(BCCDABB.);+)+(+(CMBCMBADC.;-+BM
2024-11-28 20:55
【總結(jié)】2021高中數(shù)學(xué)第二章平面向量綜合檢測B新人教A版必修41.設(shè)?1e與?2e是不共線的非零向量,且k?1e+?2e與?1e+k?2e共線,則k的值是()(A)1(B)-1(C)1?(D)任意不為零的實數(shù)2.在四邊形ABCD中,???AB=???D
2024-11-28 11:15
【總結(jié)】階段質(zhì)量評估(二)平面向量本試卷分第Ⅰ卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,共150分,考試時間120分鐘.第Ⅰ卷(選擇題)一、選擇題(本大題共12小題,每小題5分,共60分,在每小題給出的四個選項中,只有一項是符合題目要求的)1.下列量不是向量的是()A.力B.速
2024-12-08 07:02
【總結(jié)】平面向量基礎(chǔ)試題(一)一.選擇題(共12小題)1.已知向量=(1,2),=(﹣1,1),則2+的坐標(biāo)為( ?。〢.(1,5) B.(﹣1,4) C.(0,3) D.(2,1)2.若向量,滿足||=,=(﹣2,1),?=5,則與的夾角為( )A.90° B.60° C.45° D.30°3.已知均為單位向量,它們的夾角為60
【總結(jié)】平面向量較難題 一.選擇題(共25小題)1.過點P(﹣1,1)作圓C:(x﹣t)2+(y﹣t+2)2=1(t∈R)的切線,切點分別為A,B,則?的最小值為( ?。〢. B. C. D.2﹣32.如圖,已知平面四邊形ABCD,AB⊥BC,AB=BC=AD=2,CD=3,AC與BD交于點O,記I1=?,I2=?,I3=?,則( ?。〢.I1<I2<I3
2025-03-25 01:23