【總結(jié)】例1、如圖,,兩地之間隔著一個水塘,現(xiàn)選擇另一個點,測得,求,兩地之間的距離(精確到1)。ABC182,126,63oCAmCBmACB????ABm(見教材第14頁例2)ABCA
2024-11-30 12:35
【總結(jié)】課題:正弦定理、余弦定理綜合運用(二)?課題:正弦定理、余弦定理綜合運用(二)知識目標:1、三角形形狀的判斷依據(jù);?2、利用正弦、余弦定理進行邊角互換。能力目標:1、進一步熟悉正、余弦定理;2、
2025-10-31 12:40
【總結(jié)】應用舉例解決有關(guān)測量距離的問題1、正弦定理:2、余弦定理:二、應用:一、定理內(nèi)容:求三角形中的某些元素解三角形實例講解分析:在本題中直接給出了數(shù)學模型(三角形),要求A、B間距離,相當于在三角形中求某一邊長?想一想例1、如下圖,設A、B兩點在河的兩岸,要測量兩點之間的距離
2025-11-01 22:29
【總結(jié)】正弦定理和余弦定理的應用知識點:1、正弦定理:.2、正弦定理的變形公式:①,,;②,,;③;④.3、三角形面積公式:.4、余弦定理:在中,有,,.5、余弦定理的推論:,,.6、設、、是的角、、的對邊,則:①若,則;②若,則;③若,則.典型例題:解:,由正弦定理得答:(略)1、如圖,設A,B兩點在河的兩岸,一測量者在A點的同側(cè),在A所在的河岸邊選
2025-06-28 05:52
【總結(jié)】§ 正弦定理、余弦定理應用舉例在三角形的6個元素中要已知三個(除三角外)才能求解,常見類型及其解法如表所示.已知條件應用定理一般解法一邊和兩角(如a,B,C)正弦定理由A+B+C=180°,求角A;由正弦定理求出b與c.在有解時只有一解兩邊和夾角(如a,b,C)余弦定理正弦定理由余弦定理求第三邊c
2025-06-28 04:30
【總結(jié)】正弦定理、余弦定理正弦定理、余弦定理正弦定理、余弦定理正弦定理、余弦定理正弦定理、余弦定理正弦定理、余弦定理正弦定理、余弦定理正弦定理、余弦定理回憶一下直角三角形的邊角關(guān)系?ABCcba222cba??Acasin?Bcbsin?Abatan????90BA兩等式間有聯(lián)系嗎?cBbAa??si
2025-11-08 06:14
【總結(jié)】正弦定理、余弦定理的應用(2)例1、自動卸貨汽車的車箱采用液壓機構(gòu)。設計時需要計算油泵頂杠BC的長度(如圖所示)。已知車箱的最大仰角為,油泵頂點B與車箱支點A之間的距離為,AB與水平線之間的夾角為,AC長為,計算BC的長(保留三個有效數(shù)字)。?60'206?
2025-07-19 20:47
【總結(jié)】尋找最適合自己的學習方法正弦定理和余弦定理高考風向 、余弦定理的推導;、余弦定理判斷三角形的形狀和解三角形;、余弦定理、面積公式以及三角函數(shù)中恒等變換、誘導公式等知識點進行綜合考查.學習要領 、余弦定理的意義和作用;、余弦定理實現(xiàn)三角形中的邊角轉(zhuǎn)換,和三角函數(shù)性質(zhì)相結(jié)合.1.正弦定理:===2R,其中R是三角
2025-06-28 05:55
【總結(jié)】正弦定理和余弦定理 正弦定理、余弦定理 在△ABC中,若角A,B,C所對的邊分別是a,b,c,R為△ABC外接圓半徑,則 定理 正弦定理 余弦定理 內(nèi)容 ===2R a2=b2+c2-...
2025-11-08 04:47
【總結(jié)】第一篇:正弦定理余弦定理[推薦] 正弦定理余弦定理 一、知識概述 主要學習了正弦定理、余弦定理的推導及其應用,正弦定理是指在一個三角形中,各邊和它所對角的正弦的比相等.即余弦定理是指三角形任何一...
2025-09-27 06:14
【總結(jié)】正弦定理與余弦定理一、三角形中的各種關(guān)系設的三邊分別是,:1、三內(nèi)角關(guān)系三角形中三內(nèi)角之和為(三角形內(nèi)角和定理),即,;2、邊與邊的關(guān)系三角形中任意兩條邊的和都大于第三邊,任意兩條邊的差都小于第三邊,即;;3、邊與角的關(guān)系(1)正弦定理三角形中任意一條邊與它所對應的角的正弦之比都相等,即(這里,為外接圓的半徑).注1:(I)正弦定理的證明:
2025-06-28 05:43
【總結(jié)】第一篇:例談正弦定理、余弦定理的應用 龍源期刊網(wǎng)://. 例談正弦定理、余弦定理的應用 作者:姜如軍 來源:《理科考試研究·高中》2013年第08期 答:km/h,實際行駛方向與水流方向約成...
2025-09-24 18:48
【總結(jié)】......正弦定理、余弦定理練習題年級__________班級_________學號_________姓名__________分數(shù)____一、選擇題(共20題,題分合計100分)△ABC中,sinA
2025-03-25 04:59
【總結(jié)】內(nèi)容描述課件名稱正弦定理的應用課程內(nèi)容正弦定理的應用的兩種情形教學設計激趣導入:通過例題引出正弦定理應用的兩種情況。知識新授:通過對幾道例題的講解,使學生知道正弦定理的應用情形。課堂練習:通過一道小題練習以上內(nèi)容課堂小結(jié):總結(jié)本次課重點正弦定理的應用主講老師:孟亞飛(一)思考一下
2025-07-26 11:24
【總結(jié)】第一篇:§正弦定理、余弦定理的應用(教案) 響水二中高三數(shù)學(理)一輪復習教案第五編平面向量、解三角形主備人張靈芝總第25期 §正弦定理、余弦定理的應用 基礎自測 ,在A處測得同一半平面方向的...
2025-09-24 13:37