【總結(jié)】1函數(shù)與導(dǎo)數(shù)一、選擇題1.已知f(x)=xlnx,若00',2)(xxf則?等于()A.2eB.e22D.ln22、設(shè)曲線y=ax-ln(x+1)在點(0,0)處的切線方程為y=2x,則a=()A.0
2024-11-22 02:46
【總結(jié)】2009年高考數(shù)學(xué)專題復(fù)習(xí)函數(shù)、導(dǎo)數(shù)部分錯題精選一、選擇題:1、已知函數(shù),,那么集合中元素的個數(shù)為()A.1B.0C.1或0D.1或22、已知函數(shù)的定義域為[0,1],值域為[1,2],則函數(shù)的定義域和值域分別是()A.[0,1],[1,2]B.[2,3
2025-03-24 12:15
【總結(jié)】?.?條件.?.重點難點重點:利用導(dǎo)數(shù)知識求函數(shù)的極值難點:對極大、極小值概念的理解及求可導(dǎo)函數(shù)的極值的步驟觀察圖象中,點a和點b處的函數(shù)值與它們附近點的函數(shù)值有什么的大小關(guān)系?aboxy??xfy?一極值的定義?點a叫做函數(shù)y=f(x)的極小值點,
2025-07-26 19:48
【總結(jié)】2015專題五:函數(shù)與導(dǎo)數(shù)在解題中常用的有關(guān)結(jié)論(需要熟記):(1)曲線在處的切線的斜率等于,切線方程為(2)若可導(dǎo)函數(shù)在處取得極值,則。反之,不成立。(3)對于可導(dǎo)函數(shù),不等式的解集決定函數(shù)的遞增(減)區(qū)間。(4)函數(shù)在區(qū)間I上遞增(減)的充要條件是:恒成立(5)函數(shù)在區(qū)間I上不單調(diào)等價于在區(qū)間I上有極值,則可等價轉(zhuǎn)化為方程在區(qū)間I上有實根且為非二重根。(若為二次
2025-04-16 08:53
【總結(jié)】......函數(shù)與導(dǎo)數(shù)知識點【重點知識整合】導(dǎo)數(shù)的定義:設(shè)函數(shù)在處附近有定義,當(dāng)自變量在處有增量時,則函數(shù)相應(yīng)地有增量,如果時,與的比(也叫函數(shù)的平均變
2025-06-18 20:22
【總結(jié)】函數(shù)與導(dǎo)數(shù)壓軸小題1.已知函數(shù),若函數(shù)有四個不同的零點,且,則的取值范圍是()A.B.C.D.2.已知函數(shù)().若存在,使得>-,則實數(shù)的取值范圍是()A.B.C.D.3.,且當(dāng)時,,若當(dāng)時,
【總結(jié)】2011年數(shù)學(xué)周計劃函數(shù)和導(dǎo)數(shù)專項二輪復(fù)習(xí)專用函數(shù)與導(dǎo)數(shù)第一輪{命題總結(jié)與思考}【命題特點】函數(shù)的觀點和方法既貫穿了高中代數(shù)的全過程,又是學(xué)習(xí)高等數(shù)學(xué)的基礎(chǔ),是高考數(shù)學(xué)中極為重要的內(nèi)容,縱觀全國及各自主命題省市近三年的高考試題,函數(shù)與導(dǎo)數(shù)在選擇、填空、解答三種題型中每年都有試題,分值26分左右,函數(shù)的解答題在文、理兩卷中往往分別命制,這不僅是由教學(xué)內(nèi)容要求的差異所決定的,也
2025-05-17 13:47
【總結(jié)】《函數(shù)與導(dǎo)數(shù)》解題方法總結(jié)教案解題策略1.討論函數(shù)的性質(zhì)時,,注意挖掘隱含在實際中的條件,避免忽略實際意義對定義域的影響.2.運用函數(shù)的性質(zhì)解題時,注意數(shù)形結(jié)合,揚長避短.3.對于含參數(shù)的函數(shù),研究其性質(zhì)時,一般要對參數(shù)進(jìn)行分類討論,,應(yīng)分a=0和a≠0兩種情況討論,指、對數(shù)函數(shù)的底數(shù)含有字母參數(shù)a時,需按a>1和0<a<1分兩種情況討論.4.解答函數(shù)性質(zhì)有關(guān)的綜
2025-04-16 23:38
【總結(jié)】專題九:數(shù)列的極限與函數(shù)的導(dǎo)數(shù)【考點審視】極限與導(dǎo)數(shù)作為初等數(shù)學(xué)與高等數(shù)學(xué)的銜接點,新課程卷每年必考,主要考查極限與導(dǎo)數(shù)的求法及簡單應(yīng)用??v觀近年來的全國卷與各省市的試卷,試題呈“一小一大”的布局,“小題”在選擇、填空題中出現(xiàn)時,都屬容易題;“大題”在解答題中出現(xiàn)時,極限通常與其它數(shù)學(xué)內(nèi)容聯(lián)系而構(gòu)成組合題,主要考查極限思想與方法的靈活應(yīng)用能力;導(dǎo)數(shù)的考查常給出一個含參的函數(shù)或應(yīng)用建模,通
2025-05-16 04:51
【總結(jié)】函數(shù)與導(dǎo)數(shù)之————常見大題題型教師備課講義1.知識能力與目標(biāo):1.掌握常見的幾種大題題型,明確幾種題型的處理方法。二.課程講解建議::不等式恒成立,子區(qū)間問題,圖像的交點個數(shù),實際應(yīng)用題等。2題目可以一部分在課堂上練習(xí),如果時間有限,也可放在課后進(jìn)行練習(xí)。3.例題分析:().(Ⅰ)求函數(shù)的單調(diào)遞減區(qū)間;(Ⅱ)當(dāng)時,若對有恒成立,求實數(shù)的取值范圍.
2025-07-25 05:18
【總結(jié)】對數(shù)函數(shù)與指數(shù)函數(shù)的導(dǎo)數(shù)一、復(fù)習(xí)與引入:1.函數(shù)的導(dǎo)數(shù)的定義與幾何意義....,我們已經(jīng)掌握了初等函數(shù)中的冪函數(shù)、三角函數(shù)的導(dǎo)數(shù),但還缺少指數(shù)函數(shù)、對數(shù)函數(shù)的導(dǎo)數(shù),而這就是我們今天要新學(xué)的內(nèi)容.有了指數(shù)函數(shù)、對數(shù)函數(shù)的導(dǎo)數(shù),也就解決了初等函
2025-05-15 02:15
【總結(jié)】1北師大版高中數(shù)學(xué)選修2-2第三章《導(dǎo)數(shù)應(yīng)用》河北隆堯第一中學(xué)2一、教學(xué)目標(biāo):1、知識與技能:會求函數(shù)的最大值與最小值。2、過程與方法:通過具體實例的分析,會利用導(dǎo)數(shù)求函數(shù)的最值。3、情感、態(tài)度與價值觀:讓學(xué)生感悟由具體到抽象,由特殊到一般的思想方法。二、教學(xué)重點:函數(shù)最大值與最小值的求法教學(xué)難點:函數(shù)最
2025-08-05 06:05
【總結(jié)】(4).對數(shù)函數(shù)的導(dǎo)數(shù):.1)(ln)1(xx??.ln1)(log)2(axxa??(5).指數(shù)函數(shù)的導(dǎo)數(shù):.)()1(xxee??).1,0(ln)()2(????aaaaaxxxxcos)(sin1??)((3).三角函數(shù):
2025-01-18 17:16
【總結(jié)】1.3導(dǎo)數(shù)在研究函數(shù)中的應(yīng)用1.3.1函數(shù)的單調(diào)性與導(dǎo)數(shù)本節(jié)重點:利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性.本節(jié)難點:用導(dǎo)數(shù)求函數(shù)單調(diào)區(qū)間的步驟.(5)對數(shù)函數(shù)的導(dǎo)數(shù):.1)(ln)1(xx??.ln1)(log)2(axxa??(4)指數(shù)函數(shù)的導(dǎo)數(shù):.)()1(xx
2025-10-10 11:54
2025-07-25 05:39