【總結(jié)】......全等三角形綜合復(fù)習(xí)切記:“有三個角對應(yīng)相等”和“有兩邊及其中一邊的對角對應(yīng)相等”的兩個三角形不一定全等。例1.如圖,四點共線,,,,。求證:。例2.如圖,在中,是∠ABC的平分線,,垂足為。求證:。例
2025-06-23 03:58
【總結(jié)】全等三角形證明經(jīng)典題(含答案)1.已知:AB=4,AC=2,D是BC中點,111749AD是整數(shù),求ADADBC解:延長AD到E,使AD=DE∵D是BC中點∴BD=DC在△ACD和△BDE中AD=DE∠BDE=∠ADCBD=DC∴△ACD≌△BDE∴AC=BE=2∵在△ABE中AB-BE<AE<AB+BE∵AB=4
2025-06-19 23:06
【總結(jié)】全等三角形壓軸題組卷 一.選擇題(共9小題)1.(2015?荊門)如圖,點A,B,C在一條直線上,△ABD,△BCE均為等邊三角形,連接AE和CD,AE分別交CD,BD于點M,P,CD交BE于點Q,連接PQ,BM,下面結(jié)論:①△ABE≌△DBC;②∠DMA=60°;③△BPQ為等邊三角形;④MB平分∠AMC,其中結(jié)論正確的有(
2025-03-27 00:37
【總結(jié)】倍長中線(線段)造全等1、已知:如圖,AD是△ABC的中線,BE交AC于E,交AD于F,且AE=EF,求證:AC=BF分析:要求證的兩條線段AC、BF不在兩個全等的三角形中,因此證AC=BF困難,考慮能否通過輔助線把AC、BF轉(zhuǎn)化到同一個三角形中,由AD是中線,常采用中線倍長法,故延長AD到G,使DG=AD,連BG,再通過全等三角形和等線段代換即可證出。2、已知在△AB
2025-07-26 08:58
【總結(jié)】全等三角形證明經(jīng)典50題(含答案)1.已知:AB=4,AC=2,D是BC中點,AD是整數(shù),求ADADBC解:延長AD到E,使AD=DE∵D是BC中點∴BD=DC在△ACD和△BDE中AD=DE∠BDE=∠ADCBD=DC∴△ACD≌△BDE∴AC=BE=2∵在△ABE中AB-BE<AE<AB+BE∵AB=4即
【總結(jié)】....全等三角形證明經(jīng)典題(含答案)1.已知:AB=4,AC=2,D是BC中點,111749AD是整數(shù),求ADADBC解:延長AD到E,使AD=DE∵D是BC中點∴BD=DC在△ACD和△BDE中AD=DE∠BDE=∠ADCB
2025-06-19 23:08
【總結(jié)】第一篇:全等三角形培優(yōu)專題訓(xùn)練 做最適合你的數(shù)學(xué)培訓(xùn) 八年級數(shù)學(xué)培優(yōu)專題訓(xùn)練 (二)探索三角形全等的條件 1、一張長方形紙片沿對角線剪開,得到兩張三角形紙片,再將這兩張紙片擺成如下圖形式,使點...
2024-10-24 20:58
【總結(jié)】第一篇:全等三角形的經(jīng)典證明題 全等三角形的經(jīng)典證明題 1、如圖,已知AB=DE,BC=EF,AF=DC。 求證:∠EFD=∠BCA 2、如圖,已知:AD是BC上的中線,且DF=DE. 求證...
2024-10-25 05:57
【總結(jié)】第一篇:全等三角形證明經(jīng)典題 全等三角形證明經(jīng)典題 1已知:AB=4,AC=2,D是BC中點,AD是整數(shù),求AD DC :D是AB中點,∠ACB=90°,求證:CD=1AB 23已知:BC=...
2024-10-23 07:19
【總結(jié)】全等三角形證明1、已知:∠1=∠2,CD=DE,EF//AB,求證:EF=ACBACDF21E:AB//ED,∠EAB=∠BDE,AF=CD,EF=BC,求證:∠F=∠CDCBAFE3、P是∠BAC平分線AD上一點,ACAB,求證:PC-PBAC-ABP
【總結(jié)】,在△ABC中,已知D是BC中點,DE⊥AB,DF⊥AC,垂足分別是E、F,DE=DF.求證:AB=ACABCDEF12:如圖,AC平分∠BAD,CE⊥AB于E,CF⊥AD于F,且BC=?9.已知:如圖,在△ABC中,∠ACB=90°,CD⊥AB于D,∠A
2025-03-25 06:30
【總結(jié)】已知:AB=4,AC=2,D是BC中點,AD是整數(shù),求ADADBC已知:D是AB中點,∠ACB=90°,求證:DABCBACDF21E已知:∠1=∠2,CD=DE,EF//AB,求證:EF=ACA1.已知:AD平分∠BAC,AC=AB+BD,求證:
【總結(jié)】......全等三角形相關(guān)模型總結(jié)一、角平分線模型(一)角平分線的性質(zhì)模型輔助線:過點G作GE⊥射線ACA、例題1、如圖,在△ABC中,∠C=90°,AD平分∠CAB,BC=6cm,BD=4cm,那么點D到直線A
2025-06-25 04:30
【總結(jié)】1.已知:AB=4,AC=2,D是BC中點,AD是整數(shù),求ADADBC解:延長AD到E,使AD=DE∵D是BC中點∴BD=DC在△ACD和△BDE中AD=DE∠BDE=∠ADCBD=DC∴△ACD≌△BDE∴AC=BE=2∵在△ABE中AB-BE<AE<AB+BE∵AB=4即4-2<2AD<4+21<AD<3∴AD=22.已知:D是AB中點,∠A
2025-06-19 22:49
【總結(jié)】全等三角形練習(xí)(二),△ABC是等腰三角形,D、E分別是AB及AC延長線上的點,且BD=CE,連結(jié)DE交BC于點G,求證:GD=GE,在△ABC中,AB=5,AC=3,則邊BC上的中線AD的取值范圍是多少?,在△ABC內(nèi)一點,DB=DA,BF=AB,∠DBF=∠DBC,求∠F的度數(shù)。
2025-03-24 07:40