【總結(jié)】三角形、全等三角形、軸對稱三角形:由不在同一直線上的三條線段首尾順次相接所組成的圖形叫做三角形。三邊關(guān)系:三角形任意兩邊的和大于第三邊,任意兩邊的差小于第三邊。高:從三角形的一個頂點向它的對邊所在直線作垂線,頂點和垂足間的線段叫做三角形的高。中線:在三角形中,連接一個頂點和它的對邊中點的線段叫做三角形的中線。角平分線:三角形的一個內(nèi)角的平分線與這個角的對邊相交,這個角的頂
2025-07-24 01:22
【總結(jié)】WUMENG【中考考點梳理】考點一全等三角形的概念與性質(zhì)1.概念:能夠重合的兩個三角形叫做全等三角形.溫馨提示:記兩個三角形全等時,,△ABC和△DBC全等,點A和點D,點B和點B,點C和點C是對應(yīng)頂點,記作△ABC≌△DBC.2.全等三角形的性質(zhì)(1)全等三角形的對應(yīng)邊相等,對應(yīng)角相等;(2)全等三角形的對應(yīng)線段(包括角平分線、中線、高線)相等、周長相
2025-04-16 12:09
【總結(jié)】三角形全等的判定第1課時全等三角形與全等三角形的判定條件1.的兩個三角形叫做全等三角形,全等三角形的對應(yīng)邊____,對應(yīng)角____.2.兩個三角形只有一組或兩組對應(yīng)相等的元素,這兩個三角形全等;兩個三角形有三組對應(yīng)相等的元素,這兩個三角形
2024-11-09 04:27
【總結(jié)】1.如圖,在△ABC中,D是BC上一點,E是AD上一點,且=,∠BAD=∠ACE.(1)求證:AC2=BC·CD;(2)若E是△ABC的重心,求的值.2.已知△ABC中,AB=AC=5,BC=8,點D在BC邊上移動,連接AD,將△ADC沿直線AD翻折,點C的對應(yīng)點為C1.(1)當AC1⊥BC時,CD的長是多少?(2)設(shè)C
2025-03-25 06:32
【總結(jié)】山亭育才中學(xué)翟夫連①∵AD是△ABC的中線∴BD=CDABDC②S△ABD=S△ADC(等底同高)③中線的取值范圍常用的輔助線(見中線加倍延長構(gòu)造全等三角形)AB-AC2AB+AC2AD1中線1中線④重心(三
2024-11-09 22:05
【總結(jié)】數(shù)學(xué)·八年級·上冊第十三章全等三角形湛江第一中學(xué)金沙灣學(xué)校林創(chuàng)三角形全等的判定問題:如何才能確定兩個三角形全等呢?提示:可以從以下幾個方面去考慮1、定義2、角3、邊4、邊和角
2024-11-06 18:15
【總結(jié)】三角形全等的條件⑵先任意畫出一個△ABC,再畫一個△A/B/C/,使A/B/=AB,∠A/=∠A,A/C/=AC。把畫好的△A/B/C/剪下,放到△ABC上,它們?nèi)葐??探?已知:任意△ABC,畫一個△A/B/C/,使A/B/=AB,∠A/=∠A,A
2024-11-06 13:41
【總結(jié)】合作中學(xué)習(xí)學(xué)習(xí)中創(chuàng)新全等三角形復(fù)習(xí)中考總復(fù)習(xí)之--學(xué)習(xí)目標:通過概念的復(fù)習(xí)和典型例題評析,使學(xué)生掌握三角形全等的判定、性質(zhì)及其應(yīng)用。學(xué)習(xí)重點:典型例型評析。學(xué)習(xí)難點:學(xué)生綜合能力的提高。全等三角形的性質(zhì):對應(yīng)邊、對應(yīng)角相等。全等三角形的判定:知識點一般三角形全等的判定:
2025-01-12 22:52
【總結(jié)】第一篇:全等三角形 復(fù)習(xí)提問通過前兩個問題復(fù)習(xí)鞏固上一節(jié)所講的知識,通過問題3引導(dǎo)學(xué)生認識到三角形全等是證明角相等、線段相等的重要方法,然后設(shè)疑,如何證明兩個三角形全等?從而引出課題。 活動二:講...
2025-10-12 21:09
【總結(jié)】創(chuàng)設(shè)情節(jié),提出問題下列各組圖形的形狀與大小有什么特點?能夠重合的圖形叫做全等圖形(1)(2)(3)(4)能夠重合兩個三角形叫做全等三角形小試身手下列說法是否正確,并簡要說明理由:(1)邊長相等的正方形都是全等圖形;(2)同一面中華人民共和國國旗上,
2025-07-18 09:49
【總結(jié)】全等三角形下列各組圖形的形狀與大小有什么特點?能夠重合的圖形叫做全等圖形(1)(2)(3)(4)能夠重合的兩個三角形叫做全等三角形小試身手判斷下列說法是否正確,并說明理由:(1)邊長相等的正方形都是全等圖形;(2)同一面中華人民共和國國旗上,4個小五角星
2025-08-01 17:35
【總結(jié)】全等三角形泰安六中蘇曉林1、理解全等三角形的概念,能識別全等三角形中的對應(yīng)邊、對應(yīng)角。2、理解全等三角形的性質(zhì);掌握兩個三角形全等的條件;3、會用全等三角形的進行角、線段的有關(guān)計算和證明。從近幾年的中考題來看,全等三角形占有重要的地位。時間全等三角形相關(guān)題型分值(分)
2025-01-12 23:17
【總結(jié)】,已知等邊△ABC,P在AC延長線上一點,以PA為邊作等邊△APE,EC延長線交BP于M,連接AM,求證:(1)BP=CE;(2)試證明:EM-PM=AM.2、點C為線段AB上一點,△ACM,△CBN都是等邊三角形,線段AN,MC交于點E,BM,CN交于點F。求證:(1)AN=MB.(2)將△ACM繞點C按逆時針方向旋轉(zhuǎn)一定角度,如圖②所示,其
2025-03-27 00:37
【總結(jié)】2016年中考數(shù)學(xué)專題復(fù)習(xí)第十七講三角形與全等三角形【基礎(chǔ)知識回顧】三角形的概念:1、由直線上的三條線段組成的圖形叫三角形2、三角形的基本元素:三角形有條邊個頂點個內(nèi)角二、三角形的分類:按邊可分為三角形和三角形,按角可分為三角形
2025-07-25 10:00
【總結(jié)】,已知等邊△ABC,P在AC延長線上一點,以PA為邊作等邊△APE,EC延長線交BP于M,連接AM,求證:(1)BP=CE;(2)試證明:EM-PM=AM.2、點C為線段AB上一點,△ACM,△CBN都是等邊三角形,線段AN,MC交于點E,BM,CN交于點F。求證:(1)AN=MB.(2)將△ACM繞點C按逆