【總結(jié)】等比數(shù)列的概念(一)等比數(shù)列的通項公式(一)課時目標,能夠利用定義判斷一個數(shù)列是否為等比數(shù)列.2.掌握等比數(shù)列的通項公式并能簡單應用.,能夠應用等比中項的定義解決有關(guān)問題.1.如果一個數(shù)列從第____項起,每一項與它的前一項的____都等于同一個常數(shù),那么這個數(shù)列叫做等比數(shù)列.這個常數(shù)叫做等比數(shù)列的___
2025-11-26 10:14
【總結(jié)】2.等比數(shù)列的概念及通項公式1.從第2項起,每一項與它的前一項的比都等于同一個常數(shù),那么這個數(shù)列叫等比數(shù)列,這個常數(shù)叫做等比數(shù)列的公比.2.等比數(shù)列{an}的通項公式an=a1·qn-1(q≠0).3.如果a、G、b三個數(shù)滿足G2=G稱為a與b的等比中項.4.等比數(shù)列的性質(zhì).
2025-11-26 00:28
2024-12-08 13:12
【總結(jié)】第34講等比數(shù)列的概念及基本運算.n項和公式.等比關(guān)系,并能用有關(guān)知識解決相應的問題..{an}的前n項和Sn=an-3(a為不等于零的實數(shù)),那么數(shù)列{an}()Da≠1時是等比數(shù)列2項起是等比數(shù)列2項起是等比數(shù)列或等差數(shù)列由Sn
2025-11-01 07:55
【總結(jié)】復習:等比數(shù)列{an}an+1an=q(定值)(1)等比數(shù)列:(2)通項公式:an=a1?qn-1(4)重要性質(zhì):n-man=am?qm+n=p+qan?aq?am=ap注:以上m,n,p,q均為自然數(shù)成等比數(shù)列(3)bGa,,)0(,2??ababG
2025-05-10 08:13
【總結(jié)】?要點·疑點·考點?課前熱身?能力·思維·方法?延伸·拓展?誤解分析第2課時等差、等比數(shù)列的通項及求和公式要點·疑點·考點(比)數(shù)列中,Sn,S2n-Sn,S3n-S2n,…,Skn-S
2025-08-16 01:47
【總結(jié)】等比數(shù)列的前n項和(第一課時)等比數(shù)列的前n項和等比數(shù)列的前項和一、教材分析二、目標分析三、過程分析四、教法分析五、評價分析一、教材分析一、教材分析1.從在教材中的地位與作用來看《等比數(shù)列的前n項和》是數(shù)列這一章中的一個重要內(nèi)容,它不僅在現(xiàn)實生活中有著廣泛的實際應用,
2025-10-31 12:46
【總結(jié)】第一頁,編輯于星期六:點三十四分。,2.4等比數(shù)列第一課時等比數(shù)列的概念及通項公式,第二頁,編輯于星期六:點三十四分。,,登高攬勝拓界展懷,課前自主學習,第三頁,編輯于星期六:點三十四分。,第四頁,編...
2025-10-13 18:53
【總結(jié)】等比數(shù)列的概念亳州三中范圖江一、教學目標1、體會等比數(shù)列特性,理解等比數(shù)列的概念。2、能根據(jù)定義判斷一個數(shù)列是等比數(shù)列,明確一個數(shù)列是等比數(shù)列的限定條件。3、能夠運用類比的思想方法得到等比數(shù)列的定義,會推導出等比數(shù)列的通項公式。二、教學重點、難點重點:等比數(shù)列定義的歸納及應用,通項公式的推導。難點:正確理解等比數(shù)列的定義,根據(jù)定義判斷或證明某些數(shù)列為
2025-04-17 08:12
【總結(jié)】數(shù)列第一章§3等比數(shù)列第一章第1課時等比數(shù)列的概念及通項公式課堂典例講練2易混易錯點睛3課時作業(yè)5課前自主預習1本節(jié)思維導圖4課前自主預習從1979年至1999年在我國累計推廣種植雜交水稻35億多畝,增產(chǎn)稻谷3500億公斤.年增稻谷
2025-11-08 03:39
【總結(jié)】等比數(shù)列1、觀察下列數(shù)列,指出它們的共同特征:(1)1,2,4,8,….(2)….(3)1,20,202,203,….(4)活期存入10000元,年利率是%,按照復利,5年內(nèi)各年末本利和分別是10000(1+),10000(1+)2,10000(1+)3,1
2025-07-21 17:18
【總結(jié)】等比數(shù)列的前n項和第1課時一、新課導入:即,①,②②-①得即.由此對于一般的等比數(shù)列,其前項和,如何化簡?求數(shù)列:二.新課講解:Sn=a1+a1q+a1q2+…+a1qn-2+a1qn-1qSn=a1q+a1q
2025-10-07 20:25
【總結(jié)】等比數(shù)列的前n項和目的要求?1.掌握等比數(shù)列的前n項和公式。?2.掌握前n項和公式的推導方法。?3.對前n項和公式能進行簡單應用。重點難點?重點:等比數(shù)列前n項和公式的推導與應用。?難點:前n項和公式的推導思路的尋找。重點難點復
2025-11-08 17:13
【總結(jié)】等比數(shù)列的前n項和古印度國王舍罕王打算獎賞國際象棋的發(fā)明人——宰相西薩·班·達依爾。國王問他想要什么,發(fā)明者說:“請在第一個格子里放上1粒麥子,在第二個格子里放上2粒麥子,在第三個格子里放上4粒麥子,在第四個格子里放上8粒麥子,依此類推,每個格子里放的麥粒數(shù)都是前一個格子里放的麥粒數(shù)的2倍,直到第64個格子
【總結(jié)】等比數(shù)列的前n項和第1課時一、新課導入:633222221???????S即,①646332222222???????S,②②-①得即.,12264???SS1264??S由此對于一般的等比數(shù)列,其前項和n112111??????nnqaqaqaaS
2025-08-16 01:37