【導(dǎo)讀】φ方向上的位移為零。φ向線段PB,變形后為P'B'PB方向線1,PB方向線2.將上面各式代入應(yīng)力分量的表達(dá)式(常體力)。上式是極坐標(biāo)中的重調(diào)和函數(shù)?,F(xiàn)在的問題是求解。上述方程的邊值問題。求出,在解決具體問題時(shí),只能采用逆解法、半逆解法。
【總結(jié)】數(shù)學(xué)建模微分方程在研究實(shí)際問題時(shí),常常會聯(lián)系到某些變量的變化率或?qū)?shù),這樣所得到變量之間的關(guān)系式就是微分方程模型。微分方程模型反映的是變量之間的間接關(guān)系,因此,要得到直接關(guān)系,就得求微分方程。求解微分方程有三種方法:1)求精確解;2)求數(shù)值解(近似解);3)定性理論方法。一、導(dǎo)彈追蹤問題
2025-05-05 18:14
【總結(jié)】第六章常微分方程—不定積分問題—微分方程問題推廣微分方程的基本概念一階微分方程二階微分方程用Matlab軟件解二階常系數(shù)非齊次微分方程微分方程的基本概念微分方程的基本概念引例幾何問題物理問題解:設(shè)所求曲線方程為y=y(x),則有如下關(guān)系式:
2025-04-29 01:07
【總結(jié)】第九章微分方程第一節(jié)微分方程的概念引例:一曲線通過點(diǎn)(1,2),且在該曲線上任一點(diǎn)),(yxM處的切線的斜率為x2,求這曲線的方程.解)(xyy?設(shè)所求曲線為2dyxdx?2,1??yx時(shí)其中??xdxy2,2Cxy??即,1?C求得.12??xy所求曲線方程為微分方程
2025-01-14 16:39
【總結(jié)】第二章應(yīng)力狀態(tài)分析一.內(nèi)容介紹彈性力學(xué)的研究對象為三維彈性體,因此分析從微分單元體入手,本章的任務(wù)就是從靜力學(xué)觀點(diǎn)出發(fā),討論一點(diǎn)的應(yīng)力狀態(tài),建立平衡微分方程和面力邊界條件。???應(yīng)力狀態(tài)是本章討論的首要問題。由于應(yīng)力矢量與內(nèi)力和作用截面方位均有關(guān)。因此,一點(diǎn)各個(gè)截面的應(yīng)力是不同的。確定一點(diǎn)不同截面的應(yīng)力變化規(guī)律稱為應(yīng)力狀態(tài)分析。首先是確定應(yīng)力狀
2025-06-23 06:25
【總結(jié)】目錄上頁下頁返回結(jié)束一階微分方程的習(xí)題課(一)一、一階微分方程求解二、解微分方程應(yīng)用問題解法及應(yīng)用第七章目錄上頁下頁返回結(jié)束一、一階微分方程求解1.一階標(biāo)準(zhǔn)類型方程求解關(guān)鍵:辨別方程類型,掌握求解步驟2.一階
2024-11-03 16:13
【總結(jié)】第5章微分方程一、內(nèi)容精要(一)主要定義微分方程中出現(xiàn)的未知函數(shù)導(dǎo)數(shù)的最高階數(shù)叫做微分方程的階,本光盤只限討論常微分方程.含有自變量、未知函數(shù)以及未知函數(shù)的導(dǎo)數(shù)或微分的方程叫做微分方程;未知
2025-01-19 14:35
【總結(jié)】無窮級數(shù)數(shù)項(xiàng)級數(shù)冪級數(shù)討論斂散性求收斂范圍,將函數(shù)展開為冪級數(shù),求和。傅立葉級數(shù)求函數(shù)的傅立葉級數(shù)展開,討論和函數(shù)的性質(zhì)。給定一個(gè)數(shù)列??,,,,,321nuuuu將各項(xiàng)依,1???nnu即稱上式為無窮級數(shù),其中第n項(xiàng)nu叫做級數(shù)的一般項(xiàng)
2024-10-05 00:06
【總結(jié)】微分方程的近似解法差分解法對三類典型偏微分方程的定解問題,差分解法的基本思想是用函數(shù)的差商代替微商,從而把微分運(yùn)算化成代數(shù)運(yùn)算,求解出在定解區(qū)域中足夠多的點(diǎn)上的近似值。1、差分與差分方程n函數(shù)f(x)的導(dǎo)數(shù)是函數(shù)的增量與自變量增量的比值當(dāng)自變量增量趨于零的極限。n即:一階差商高階差商由差商代替微商的誤差偏導(dǎo)數(shù)的差商表示差分方程
2025-08-05 07:11
【總結(jié)】第四次:常微分方程數(shù)值解一:引言:1:微分方程在數(shù)模中有重要作用。2:列出微分方程僅是第一步,求解微方程為第二步。3:但僅有少數(shù)微分方程可解析解,大部分非線性方程,變系數(shù)方程,均所謂“解不出來”)1()()(()()]()[()(:1____])
2025-08-20 11:53
【總結(jié)】例1一曲線通過點(diǎn)(1,2),且在該曲線上任一點(diǎn)),(yxM處的切線的斜率為x2,求這曲線的方程.解)(xyy?設(shè)所求曲線為xdxdy2???xdxy22,1??yx時(shí)其中,2Cxy??即,1?C求得.12??xy所求曲線方程為一、問題的提出微分方程:凡含有未知函數(shù)的導(dǎo)數(shù)或微分的方程叫
2024-12-08 03:00
【總結(jié)】第九章常微分方程的數(shù)值解法§1、引言§2、初值問題的數(shù)值解法單步法§3、龍格-庫塔方法§4、收斂性與穩(wěn)定性§5、初值問題的數(shù)值解法―多步法§6、方程組和剛性方程§7、習(xí)題和總結(jié)主要內(nèi)容主
2025-08-04 15:59
【總結(jié)】第七講積分變換與微分方程?積分變換?拉普拉斯變換拉普拉斯變換函數(shù)函數(shù)名稱意義LaplaceTransform[expr,t,s]對expr的拉普拉斯變換InverseLaplaceTransform[expr,s,t]對expr的拉普拉斯逆變換LaplaceTransform[expr,{t1,t2,…
2024-10-16 20:10
【總結(jié)】主講:林亮?xí)r間:性質(zhì):選修對象:信科08-1、2微分方程數(shù)值解法差分格式的穩(wěn)定性和收斂性問題的提出我們先看一個(gè)數(shù)值例子,考慮初邊值問題??????????????????????????????
2025-01-04 22:48
【總結(jié)】第六章微分方程及其應(yīng)用常微分方程的基本概念與分離變量法一階線性微分方程二階常系數(shù)線性微分方程常微分在經(jīng)濟(jì)中應(yīng)用常微分方程的基本概念與分離變量法微分方程的基本概念1.微分方程含有未知函數(shù)的導(dǎo)數(shù)或微分的方程稱為微分方程。注:在微分方程中,如果未知
2024-11-03 21:15
【總結(jié)】偏微分方程基本概念?數(shù)學(xué)物理方程通常是指物理學(xué)、力學(xué)、工程技術(shù)和其他學(xué)科中出現(xiàn)的偏微分方程。?反映有關(guān)的未知變量關(guān)于時(shí)間的導(dǎo)數(shù)和關(guān)于空間變量的導(dǎo)數(shù)之間的制約關(guān)系。?連續(xù)介質(zhì)力學(xué)、電磁學(xué)、量子力學(xué)等等方面的基本方程都屬于數(shù)學(xué)物理方程的范圍?;靖拍?偏微分方程是指含有未知函數(shù)以及未知函數(shù)的某些偏導(dǎo)數(shù)的等式。
2025-03-21 22:00