freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

[初三數(shù)學]20xx年中考數(shù)學一模壓軸題20xx年中考數(shù)學一模8、12、22、23、24、-資料下載頁

2025-01-08 19:43本頁面
  

【正文】 , 點E 落在 ,容易得出 BE 與 DE 之間的數(shù)量關系為 ; ( 2) 當 點 D 在如圖 3 的位置 時, 請 你畫出圖形,研究 線段 BE 與 DE 之間的數(shù)量關系是否 與( 1)中的結論相同 ,寫出你的猜想 并加以證明 . DBCAABC ( D )圖 3圖 2 ????? ?? ??? ??? ????????? ????? ? 5 分 圖 1DEBCA22.解:( 1) 四邊形 DFCE 的面積 S? 6 , △ DBF 的面積 1S? 6 , △ ADE 的面積 2S? 32 . ????????????? ? 3 分 ( 2) 2S? 214SS (用含 S、 1S 的代數(shù)式表示) . ?? ? ? 4 分 ( 3) □ DEFG 的面積 為 12. ???????????? ??? ? 5 分 五 、解答題( 本 題共 22 分, 第 23 題 7 分, 第 24 題 7 分, 第 25 題 8 分 ) 23.解:( 1) △ = 24 4( 1)( 3)k k k? ? ? = 224 4 8 12k k k? ? ?[來源 :學科網(wǎng) ] = 8 12k?? ?????? ? ??????????? ? ?? ? ? ? 1 分 ∵ 方程有兩個不相等的實數(shù)根, ∴ 1 0,??????? 即 1 0,8 12 k????? ? ?? ∴ k 的取值范圍是 32k? 且 1k? . ????? ? ???? ?? ? ? 3 分 ( 2) 當方程有兩個相等的實數(shù)根時, △ = 8 12k??=0 . ∴ 32k? . ?? ?? ?? ?? ?? ?? ?????? ?? ? ?? ? ? 4 分 ∴ 關于 y 的方程為 2 ( 6 ) 1 0y a y a? ? ? ? ?. ∴ 239。 ( 6) 4( 1)aa? ? ? ? ?2 12 36 4 4a a a? ? ? ? ?2 16 32aa? ? ? 2( 8) 32a? ? ? . 由 a 為正整數(shù), 當 2( 8) 32a??是完全平方數(shù)時,方程才有可能有整數(shù)根 . 設 22( 8) 32am? ? ? (其中 m 為整數(shù)), 32 pq? ( p 、 q 均為整數(shù)), ∴ 22( 8) 32am? ? ?.即 ( 8 ) ( 8 ) 32a m a m? ? ? ? ?. 不妨設 8, m pa m q? ? ??? ? ? ?? 兩式相加,得 162pqa ??? . ∵ ( 8 )am?? 與 ( 8 )am?? 的奇偶性相同, ∴ 32 可 分解為 216? , 48? , ( 2) ( 16)? ? ? , ( 4) ( 8)? ? ? , ∴ 18pq?? 或 12或 18? 或 12? . ∴ 17a? 或 14或 1? (不合題意,舍去)或 2 . 當 17a? 時, 方程的兩根為 11 72y ??? ,即 1 2y?? , 2 9y ?? . ?? 5 分 當 14a? 時,方程 的兩根為 822y ??? ,即 1 3y?? , 2 5y ?? . ?? 6 分 當 2a? 時, 方程的兩根為 422y ?? ,即 1 3y? , 2 1y? . ??? ? 7 分 24.解:( 1) ∵ 拋物線 y=mx2+2mx+n 經(jīng)過 點 A( 4, 0)和點 B( 0, 3) , ∴ 16 8 0, m nn ? ? ??? ?? ∴ 3,83.mn? ????? ??. ∴ 拋物線的解析式為: 233 384y x x? ? ? ?. ? ? ? ???? ?? ? 2 分 ( 2) 令 3y? ,得 233 3384xx? ? ? ?,得 1 0x? , 2 2x ?? , [來源 :學 *科 *網(wǎng) Z*X*X*K] ∵ 拋物線向右 平移后 仍經(jīng)過 點 B, ∴ 拋物線 向右 平移 2 個單位. ?? ? 3 分 [來源 :學 科 網(wǎng) ZXXK] ∵ 233 384y x x? ? ? ? 233( 2 1) 388xx? ? ? ? ? ? 23 27( 1)88x? ? ? ?. ? ? ? ? 4 分 ∴ 平移后的拋物線解析式為 23 2 7( 1)88yx? ? ? ?. ?????? ? ? 5 分 ( 3)由拋物線向右平移 2 個單位,得 39。( 2,0)A ? , 39。(2,3)B . ∴ 四邊形 AA’B’B 為平行四邊形,其 面積 39。 2 3 6A A OB? ? ? ?. 設 P 點的縱坐標為 Py ,由 39。OAP△ 的面積 =6, ∴ 1 39。62POA y ?,即 1 262Py?? ∴ 6Py ? , 6Py ?? . ?? ? ??? ? ??? ? ? ? ?? ? ? ? ? 6 分 當 6Py ? 時,方程 23 27( 1) 688x? ? ? ?無實根, 當 6Py ?? 時,方程 23 2 7( 1) 688x? ? ? ? ?的解為 1 6x? , 2 4x ?? . ∴ 點 P 的坐標 為 (6, 6)? 或 ( 4, 6)??. ??? ? ? ? ?? ? ? ? ? 7 分 25.解:( 1)完成畫圖如圖 2, 由 BAC? 的度數(shù) 為 60176。 , 點 E 落在 AB 的中點處 , 容易得出 BE 與 DE 之間的數(shù)量關系 為 BE=DE ; ? ? ? ? ? 3 分 ( 2)完成畫圖如圖 3. 猜想: BE DE? . 證明:取 AB 的中點 F,連結 EF. ∵ 90ACB? ? ? , 30ABC? ? ? , ∴ 1 60?? ? , 12CF AF AB??. ∴ △ ACF 是等邊三角形. ∴ AC AF? . ① ?? 4 分 ∵ △ ADE 是等邊三角形, ∴ 2 60? ? ? , AD AE? . ② ∴ 12??? . ∴ B A D B A D? ? ? ? ? ? ?. 即 CAD FAE? ? ? .③ ?? ? ? ? ??????? ?? ? ? 5 分 由①②③得 △ ACD≌ △ AFE( SAS). ?? ? ??? ? ? ? ? ? 6 分 ∴ 90ACD AF E? ? ? ? ?. ∵ F 是 AB 的中點, ∴ EF 是 AB 的垂直平分線. ∴ BE=AE. ? ? ? ? ? ? ? ?? ? ? ? ? ? ? ? ? ? ? ? ? 7 分 ∵ △ ADE 是等邊三角形 , ∴ DE=AE. ∴ BE DE? . ? ? ? ? ? ? ? ?? ? ? ? ? ? ? ? ? ? ? ? 8 分 EABC ( D )圖 221FEDBCA圖 3六. 房山 8.如圖,梯形 ABCD 中, AB∥ CD,∠ A=30176。,∠ B=60176。, AD= 32 , CD=2,點 P 是 線段 AB 上一個動點,過點 P 作 PQ⊥ AB 于 P,交其它邊于 Q,設 BP 為x, △ BPQ 的 面積為 y,則下列圖象中,能表示 y 與 x 的函數(shù)關系的圖象大致是( ). xy6312O xy6312O A B xy6312O xy6312O C D 答案: A 12. 如圖,已知 Rt△ ABC 中, ∠ ACB=90176。,AC=6, BC= 8,過直角頂點 C 作 CA1⊥ AB,垂足為 A1,再過 A1作 A1C1⊥ BC,垂足為 C1,過 C1 作 C1A2⊥ AB,垂足為 A2,再過 A2 作 A2C2⊥ BC,垂足為 C2,?,這樣一直作下去,得到了一組線段CA1, A1C1, C1A2, A2C2,?, AnCn,則 A1C1= ,AnCn= 答案: 2546 ???????; n2546 ??????? 22. 閱讀下面材料: 如圖 1,已知 線段 AB、 CD 相交于點 O,且 AB=CD,請你利用所學 知識把線段 AB、 CD 轉移 到同一三角形 中. 小強同學利用平移知識解決了此問題,具體做法: 如圖 2,延長 OD 至點 E,使 DE=CO, 延長 OA 至點 F,使 AF=OB, 聯(lián)結 EF,則△ OEF 為所求的三角 形. 請你仔細體會小強的做法,探究并解答下列問題: 如圖 3,長為 2 的三條線段 AA′, BB′, CC′交于一點 O,并且 ∠ B′OA=∠ C′OB=∠ A′OC=60176。 ; ( 1) 請你把 三條線段 AA′, BB′, CC′ 轉移到同一三角形中 . (簡要敘述 畫法) ( 2)聯(lián)結 AB′、 BC′、 CA′,如圖 4,設 △ AB′O、 △ BC′O、 △ CA′O 的面積分別為 S S S3, QBCDA P第 8題 圖 A B C A 1 A 2 A 3 A 4 A 5 C 1 C 2 C 3 C 4 C 5 12 題 圖 第 12 題圖 則 S1+S2+S3 3 (填“ ”或“ ”或“ =” ) . 五、解答題(共 3 道小題, 23 題 7 分, 24 題 8 分, 25 題 7 分,共 22 分) 23. 已知:關于 x 的方程 ? ? 0322 ????? kxkx ⑴ 求證:方程 ? ? 0322 ????? kxkx 總有實數(shù) 根 ; ⑵ 若方程 ? ? 0322 ????? kxkx 有一根大于 5 且小于 7,求 k 的整數(shù) 值 ; ⑶ 在 ⑵ 的條件下,對于一次函數(shù) bxy ??1 和二次函數(shù) 2y = ? ? 322 ???? kxkx ,當 71 ??? x 時,有 21 yy? ,求 b 的取值范 圍 . 24. 如圖 ⑴ ,在平面直角坐標系中, O 為坐標原點,拋物線 y=ax2+ 8ax+ 16a+ 6經(jīng) 過點 B( 0, 4) . ⑴ 求拋物線的解析式; ⑵設 拋物線的頂點為 D,過點 D、 B 作直線交 x 軸于點 A,點 C 在拋物線的對稱軸上,且 C 點的縱坐標為 4,聯(lián)結 BC、 : △ ABC 是等腰直角三角形; ⑶在⑵的條件下 ,將直線 DB 沿 y 軸向 下 平移,平移后的直線記為 l ,直線 l 與x 軸、 y 軸分別交于點 A′、 B′,是否存在直線 l,使 △ A′B′C 是 直角三角形,若存在求出 l 的解析式,若不存在,請說明理由 . DCABO xy 圖 2 圖 3 如圖 4 圖 1ABC圖 2DACBPDCABO xy 圖⑴ 備用 圖 解:⑴ 證明 :⑵ ⑶ 25. 如圖 1,在△ ABC 中, ∠ ACB=90176。, AC=BC= 5 , 以 點 B 為圓心,以 2 為半徑作圓 . ⑴ 設 點 P 為 ☉ B 上的一個動 點,線段 CP 繞著點 C 順時針旋轉 90176。,得到線段 CD, 聯(lián)結 DA, DB, PB, 如圖 2. 求證 : AD=BP; ⑵ 在 ⑴ 的條件下, 若∠ CPB=135176。,則 BD=___________; ⑶ 在 ⑴ 的條件下, 當∠ PBC=_______176。 時, BD 有最大值,且最大值 為__________; 當∠ PBC=_________176。 時, BD 有最小 值,且最 小 值 為 __________. FEC 39。B 39。A 39。BCAO22. ( 1)畫法: ① 延長 OA 至點 E,使 AE= OA? 。 ② 延長 OB? 至點 F,使 B? F=OB。 ③ 聯(lián)結 EF,則 OEF? 為所求的三角形 .1 分 圖 2 分 ( 2)
點擊復制文檔內(nèi)容
試題試卷相關推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號-1