【正文】
b 證 a b a b 2 b 2 b a a b 如果 則由 g的連續(xù)性 不等式兩端都是 0. 如果左端的二次函數(shù)恒非負(fù) ,故其判別式非正 , b b 2 a a a b 2 b 2 b 2 a a a a 38 n 2 2 2 在點(diǎn) 的導(dǎo)數(shù) , 再將函數(shù) f ( x)寫成 由此證明下列等式證由類似上題的辦法證明 設(shè)在 [0,1]連續(xù)且 f ( x)0 證明 證 0 1 1 1 0 2 的形式 , 再求 1 1 . 0 f ( x)dx 0 f ( x) n 證 n 39 證 n 習(xí)題 40 求下列不定積分: dx 1 3 d 5 / 3 2 2 x 2 41 42 時(shí) , 令 43 時(shí) , 令 2 2 dx 44 5 3 5 3 1 e2 x 3 x ex 3 x 3 2 2 1 2 2 2 45 習(xí)題 求下列不定積分: 46 sin 3 xdx 47 2 48 2 u 2udu arcsin 原函數(shù)為偶函數(shù) x arctan xdx 1 arctan xd 2 )5/ 2 49 dx 2 5/ 2 3 習(xí)題 求下列不定積分 50 3 2 51 6 3 3 52 1 2 2 2 2 1 1 53 2 54 x 2 tan dx x 2 55 2 x) du tan x 4 2 4 4 4 3 6 56 2 2 4 另解: 2 x cos x 57 2 另解 2 dx dx 3 .3 58 2 1 2 xdx 1 2 x 2 2 xdx 4 3 2 2 dx dx 59 x 習(xí)題 60 求下列各定積分