【總結(jié)】DCBAEDCBA常見輔助線的作法有以下幾種:1)遇到三角形的中線,倍長(zhǎng)中線,使延長(zhǎng)線段與原中線長(zhǎng)相等,構(gòu)造全等三角形。2)遇到角平分線,可以自角平分線上的某一點(diǎn)向角的兩邊作垂線,構(gòu)造全等三角形。3)截長(zhǎng)法與補(bǔ)短法,具體做法是在某條線段上截取一條線段與特定線段相等,或是將某條線段延長(zhǎng),是之與特定線段相等,再利用三角形全
2024-12-08 00:46
【總結(jié)】專題學(xué)習(xí)幾何證明中常見的“添輔助線”方法Ⅰ.連結(jié)目的:構(gòu)造全等三角形或等腰三角形語(yǔ)言描述:連結(jié)XY注意點(diǎn):雙添-在圖形上添虛線在證明過(guò)程中描述添法Ⅰ.連結(jié)典例1:如圖,AB=AD,BC=DC,求證:∠B=∠D.
2025-07-26 19:45
【總結(jié)】全等三角形問題中常見的輔助線的作法常見輔助線的作法有以下幾種:1)遇到等腰三角形,可作底邊上的高,利用“三線合一”的性質(zhì)解題,思維模式是全等變換中的“對(duì)折”.2)遇到三角形的中線,倍長(zhǎng)中線,使延長(zhǎng)線段與原中線長(zhǎng)相等,構(gòu)造全等三角形,利用的思維模式是全等變換中的“旋轉(zhuǎn)”.3)遇到角平分線,可以自角平分線上的某一點(diǎn)向角的兩邊作垂線,利用的思維模式是三角形全等變換中的“對(duì)折”
2025-06-19 21:56
【總結(jié)】BS版七年級(jí)下階段核心歸類平行線中常見作輔助線的技巧的九種類型第二章相交線與平行線4提示:點(diǎn)擊進(jìn)入習(xí)題答案顯示61235見習(xí)題見習(xí)題見習(xí)題C見習(xí)題見習(xí)題87見習(xí)題見習(xí)題9見習(xí)題1.如圖,∠
2025-03-12 12:18
【總結(jié)】平移腰作高補(bǔ)為三角形平移對(duì)角線其他方法轉(zhuǎn)化為三角形或平行四邊形等在梯形中常用的作輔助線方法開動(dòng)腦筋A(yù)BCDEEFABCDABCDO平
2024-11-12 02:37
【總結(jié)】梯形的輔助線講學(xué)稿(2課時(shí))執(zhí)筆:許運(yùn)山審定:道橋中學(xué)數(shù)學(xué)組學(xué)習(xí)目標(biāo):會(huì)作梯形的輔助線,并運(yùn)用它解決梯形的問題學(xué)習(xí)重點(diǎn):梯形的輔助線的作法.學(xué)習(xí)難點(diǎn):作梯形輔助線解決梯形問題.學(xué)習(xí)過(guò)程:一、學(xué)前準(zhǔn)備:(5分鐘)、等腰梯形、直角梯形?等腰梯形有什么性質(zhì)??有什么性質(zhì)?二、合作探究:(30分鐘)問題一:平移一腰,將兩腰轉(zhuǎn)化在一個(gè)三角形中,將兩底角轉(zhuǎn)
2025-08-20 17:18
【總結(jié)】2020年4月平移腰作高補(bǔ)為三角形平移對(duì)角線其他方法轉(zhuǎn)化為三角形或平行四邊形等在梯形中常用的作輔助線方法開動(dòng)腦筋靈活應(yīng)用ABCDEFAB
2024-11-07 01:00
【總結(jié)】(1)只見顯性中點(diǎn)而看不到隱藏的中點(diǎn);(2)挖掘出隱藏的中點(diǎn)后,卻不會(huì)將各中點(diǎn)條件合理地進(jìn)行篩選與重組;(3)構(gòu)造出待證全等三角形后,常常是找邊容易找角難,對(duì)于角相等的證明方法過(guò)于單一且不夠靈活.1、如圖,在等腰直角三角形ABC中,∠ABC=90°,D為邊AC的中點(diǎn),過(guò)點(diǎn)D作DE⊥DF,交AB于點(diǎn)E,交B
2025-07-26 00:14
【總結(jié)】BS版八年級(jí)下階段核心方法角平分線中常用作輔助線的方法第一章三角形的證明4提示:點(diǎn)擊進(jìn)入習(xí)題答案顯示123見習(xí)題見習(xí)題見習(xí)題見習(xí)題1.如圖,在△ABC中,AD平分∠BAC,∠C=2∠B.求證:AC+CD=AB.證
2025-03-12 12:19
【總結(jié)】幾何證明中常見的“添輔助線”方法一.連結(jié)一.連結(jié)典例1:如圖,AB=AD,BC=DC,求證:∠B=∠D.ACBDAC構(gòu)造全等三角形BD構(gòu)造兩個(gè)等腰三角形一.連結(jié)典例2:如圖,AB=AE,BC=ED
2025-07-26 19:16
【總結(jié)】常見輔助線的作法有以下幾種:1)遇到等腰三角形,可作底邊上的高,利用“三線合一”的性質(zhì)解題,思維模式是全等變換中的“對(duì)折”.2)遇到三角形的中線,倍長(zhǎng)中線,使延長(zhǎng)線段與原中線長(zhǎng)相等,構(gòu)造全等三角形,利用的思維模式是全等變換中的“旋轉(zhuǎn)”.3)遇到角平分線,可以自角平分線上的某一點(diǎn)向角的兩邊作垂線,利用的思維模式是三角形全等變換中的“對(duì)折”,所考知識(shí)點(diǎn)常常是角平分線
2025-06-18 13:03
【總結(jié)】圓的常用輔助線及作法嘗試練習(xí)一嘗試練習(xí)二數(shù)學(xué)歌訣作法及應(yīng)用弦心距直徑圓周角切線徑兩圓相切公切線中點(diǎn)圓心線兩圓相交公共弦嘗試練習(xí)圓的常用輔助線及作法常用思想圓是初中幾何學(xué)習(xí)中重要內(nèi)容,學(xué)好圓的有關(guān)知識(shí),掌握正確的解題方法,對(duì)于提高學(xué)生
2025-01-18 17:52
【總結(jié)】XJ版七年級(jí)下階段核心類型平行線中作輔助線的九種常見類型第4章相交線與平行線4提示:點(diǎn)擊進(jìn)入習(xí)題答案顯示1235見習(xí)題B見習(xí)題6見習(xí)題見習(xí)題見習(xí)題7見習(xí)題8見習(xí)題提示:點(diǎn)擊進(jìn)入習(xí)題答案顯示
【總結(jié)】全等三角形問題中常見的輔助線的作法20常見輔助線的作法有以下幾種:1)遇到等腰三角形,可作底邊上的高,利用“三線合一”的性質(zhì)解題,思維模式是全等變換中的“對(duì)折”.2)遇到三角形的中線,倍長(zhǎng)中線,使延長(zhǎng)線段與原中線長(zhǎng)相等,構(gòu)造全等三角形,利用的思維模式是全等變換中的“旋轉(zhuǎn)”.3)遇到角平分線,可以自角平分線上的某一點(diǎn)向角的兩邊作垂線,利用的思維模式是三角形全等變換中的“對(duì)
2025-03-24 07:41
【總結(jié)】相似三角形中幾種常見的輔助線作法在添加輔助線時(shí),所添加的輔助線往往能夠構(gòu)造出一組或多組相似三角形,或得到成比例的線段或出等角,等邊,從而為證明三角形相似或進(jìn)行相關(guān)的計(jì)算找到等量關(guān)系。主要的輔助線有以下幾種:一、添加平行線構(gòu)造“A”“X”型例1:如圖,D是△ABC的BC邊上的點(diǎn),BD:DC=2:1,E是AD的中點(diǎn),求:BE:EF的值.解法一:過(guò)點(diǎn)D作CA的平行線交BF于點(diǎn)
2025-06-25 03:22