【總結】第七章特征值與特征向量的數(shù)值求法習題7用冪法求下列矩陣的主特征值和主特征向量:?????????????????324262423A當特征值有3位小數(shù)穩(wěn)定時迭代終止,再對計算結果用Aitken外推加速。用反冪法求下列矩陣模最小的特征值和對應的特征向量:
2025-08-05 20:25
【總結】第四章矩陣的特征值和特征向量§矩陣的特征值和特征向量000,(44.1.1)nAnRAAA?????????設是階方陣,如果對于數(shù),存在非零向量使得則稱為的一個特征值,為的特定義征向量。4.
2025-07-21 03:41
【總結】NumericalAnalysisJ.G.LiuSchoolofMath.&Phys.NorthChinaEle
2025-10-10 00:59
【總結】線代框架之特征值與特征向量:的特征矩陣.的特征多項式.的特征方程計算特征值的方法:(1)先由求矩陣A的特征值(共n個即幾階矩陣有幾個,注意:算出的值用檢驗,以免計算錯誤)(2)再由求基礎解系,即矩陣A屬于特征值的線性無關的特征向量。性質:(1)(2)(3)。(4)常用結論:(1)注意,上三角,下三角,對角
2025-08-23 14:30
【總結】畢業(yè)設計(論文)材料之二(2)本科畢業(yè)設計(論文)開題報告題目:矩陣的特征值與特征向量的理論與應用課題類型:科研□論文√模擬□實踐□學生姓名:學號:3090801105專業(yè)
2025-01-12 16:43
【總結】矩陣的特征值與特征向量的若干應用Severalapplicationsofeigenvaluesandeigenvectorsofthematrix摘要本文介紹了矩陣的特征值與特征向量的一些理論,在此理論基礎上做了一定的推廣,并通過矩陣的特征值與特征向量的命題與性質來探討特征值與特
2025-06-22 12:51
【總結】本科生畢業(yè)論文設計特征值與特征向量的應用作者姓名:盧超男指導教師:蘭文華所在學部:信息工程學部專業(yè):數(shù)學與應用數(shù)學班級(屆):2022屆2班二〇一三年四月二十六日目錄摘要.............................................................1緒論...............
2025-01-16 14:16
【總結】第五章《特征值與特征向量》自測題(100分鐘)一、填空題:(共18分,每小題3分)1、設三階矩陣的特征值為-1,1,2,則-1的特征值為();*的特征值為();(3+)的特征值為()。2、設三階矩陣=0,則的全部特征向量為()。3、若~E,則=()。4、已
2025-06-07 21:54
【總結】矩陣的特征值與特征向量分析及應用畢業(yè)論文摘要特征值和特征向量是高等代數(shù)中的一個重要概念,為對角矩陣的學習奠定了基礎.本文在特征值和特征向量定義的基礎上進一步闡述了特征值和特征向量的關系.本文還研究矩陣的特征值和特征向量的求解方法.再列舉了特征值和特征向量相關的性質.最后給出了陣的特征值與特征向量在生活中的運用,并應用于實例.關
2025-08-18 00:08
【總結】畢業(yè)論文(設計)題目:矩陣特征值和特征向量的求法與應用1畢業(yè)設計(論文)原創(chuàng)性聲明和使用授權說明原創(chuàng)性聲明本人鄭重承諾:所呈交的畢業(yè)設計(論文),是我個人在指導教師的指導下進行的研究工作及取得的成果。盡我所知,除文中特別加以標注和致謝的地方外,不包含其他人或組織已經(jīng)發(fā)表或公布過的研
2025-08-18 00:09
【總結】第九章.矩陣特征值和特征向量計算但高次多項式求根精度低,一般不作為求解方法.目前的方法是針對矩陣不同的特點給出不同的有效方法.工程實踐中有多種振動問題,如橋梁或建筑物的振動,機械機件、飛機機翼的振動,及一些穩(wěn)定性分析和相關分析可轉化為求矩陣特征值與特征向量的問題。1.(),()det(
2025-01-04 13:43
【總結】安徽建筑大學畢業(yè)設計(論文)開題報告題目矩陣特征值與特征向量求解及其應用專業(yè)信息與計算科學姓名張浩班級10信息(2)班學號10207010233指導教師宮珊珊提交時間2022年3月4號
2025-01-18 23:44
【總結】作用初等變換終止矩陣結果秩階梯陣r(A)=非0行數(shù)行變換極大無關組(基)階梯陣主列對應原矩陣的列行變換行最簡形非主列的線性表示關系解Ax=b(AX=B)(Ab)行變換階梯陣判別解:r1r2無解r1=r2=n唯一解,r1=r2n無窮
2025-01-19 09:15
【總結】安徽工程大學畢業(yè)設計(論文)-1-引言眾所周知,矩陣理論在歷史上至少可以追溯到Sylvester與Cayley,特別是Cayley1858年的工作。自從Cayley建立矩陣的運算以來,矩陣理論便迅速發(fā)展起來,矩陣理論已是高等代數(shù)的重要組成部分。近代數(shù)學的一些學科,如代數(shù)結構理論與泛函分析可以在矩陣理論中尋找它們的根
2025-06-04 04:50
【總結】第四章相似矩陣課程教案授課題目:第一節(jié)特征值與特征向量教學目的:掌握方陣的特征值和特征向量的概念和求法.教學重點:掌握方陣的特征值和特征向量的求法.教學難點:方陣特征向量的求法.課時安排:3學時.授課方式:多媒體與板書結合.教學基本內容:§特征值與特征向量1定義1?設是階方陣,如果存在數(shù)和維非零列向量,使得
2025-06-16 17:05