【導(dǎo)讀】借助頭腦中的“畫(huà)面感”來(lái)作出判斷,實(shí)現(xiàn)文字語(yǔ)言和圖形語(yǔ)言的轉(zhuǎn)化。為空間中三條互相平行且兩兩間的距離分別為4,在一個(gè)頂點(diǎn)處的三條棱兩兩互相垂直的四面體.來(lái)解釋生活中的現(xiàn)象。放在正方體或長(zhǎng)方體中考慮;這是解決任何一個(gè)數(shù)學(xué)問(wèn)題時(shí)都。要有的一種意識(shí)。求二面角的余弦值
【總結(jié)】平面的基本性質(zhì)公理1:如果一條直線上的兩點(diǎn)在一個(gè)平面內(nèi),那么這條直線在此平面內(nèi)(教師引導(dǎo)學(xué)生閱讀教材P42前幾行相關(guān)內(nèi)容,并加以解析)符號(hào)表示為L(zhǎng)A·αA∈LB∈L=LαA∈αB∈α公理1作用:判斷直線是否在平面內(nèi)生活中,我們看到三腳架可以牢固地支撐照相機(jī)或測(cè)量用的平板儀等等……C·
2025-04-17 00:53
【總結(jié)】第1頁(yè)版權(quán)所有不得復(fù)制立體幾何中的數(shù)量問(wèn)題二.重點(diǎn)、難點(diǎn):1.角度(1)兩條異面直線所成角]2,0(?(2)直線與平面所成角]2,0[?(3)二面角],0[?2.距離(1)作垂線(2)體積轉(zhuǎn)化【典型例題】[例1]PA、PB
2025-07-29 15:14
【總結(jié)】精品資源1.在平行六面體OABC---DEFG中(如圖),側(cè)面OABC和CBFG是單位正方形,面OCGD是菱形且∠COD=60°.設(shè)a是常數(shù)且0a1,P是EB上的點(diǎn)且分EB的比為2:1,Q在GE上,且分線段GE的比為a(1-a).(1)試用(2)當(dāng)a為何值時(shí),有最小值?解(1)所以平行六面體OABC---DEFG為
2025-04-17 07:36
【總結(jié)】立體幾何中的數(shù)量問(wèn)題二.重點(diǎn)、難點(diǎn):1.角度(1)兩條異面直線所成角(2)直線與平面所成角(3)二面角2.距離(1)作垂線(2)體積轉(zhuǎn)化【典型例題】[例1]PA、PB、PC兩兩垂直,與PA、PB所成角為45°,60°,求與PC所成角。解:構(gòu)造長(zhǎng)方體[例2]正四棱錐S—A
2025-06-07 23:44
【總結(jié)】本課件為“逐字編輯”課件,使用時(shí)欲修改課件,請(qǐng)雙擊對(duì)應(yīng)內(nèi)容,即可進(jìn)入可編輯狀態(tài)。在此狀態(tài)下,如果有的公式雙擊后無(wú)法用公式編輯器編輯,請(qǐng)選中此公式,點(diǎn)擊右鍵、“切換域代碼”,即可進(jìn)行編輯。修改后再點(diǎn)擊右鍵、“切換域代碼”,即完成修改。第8講空間幾何體第9講直線、平面之間的位置關(guān)系專題4
2025-08-01 16:41
【總結(jié)】一、判定兩線平行的方法1、平行于同一直線的兩條直線互相平行2、垂直于同一平面的兩條直線互相平行3、如果一條直線和一個(gè)平面平行,經(jīng)過(guò)這條直線的平面和這個(gè)平面相交,那么這條直線就和交線平行4、如果兩個(gè)平行平面同時(shí)和第三個(gè)平面相交,那么它們的交線平行5、在同一平面內(nèi)的兩條直線,可依據(jù)平面幾何的定理證明二、判定線面平行的方法1、據(jù)定義:如果一條直線和一個(gè)平面
2025-04-17 01:18
【總結(jié)】專題達(dá)標(biāo)檢測(cè)一、選擇題1.若a、b表示互不重合的直線,α、β表示不重合的平面,則a∥α的一個(gè)充分條件是( )A.α∥β,a∥βB.α⊥β,a⊥βC.a(chǎn)∥b,b∥αD.α∩β=b,a?α,a∥b解析:A,B,C選項(xiàng)中,直線a都有可能在平面α內(nèi),不能滿足充分性,故選D.答案
2025-06-07 19:25
【總結(jié)】理科數(shù)學(xué)高考立體幾何大題精選不建系求解1.本小題滿分12分)(注意:在試題卷上作答無(wú)效)如圖,四棱錐S-ABCD中,SD底面ABCD,AB//DC,ADDC,AB=AD=1,DC=SD=2,E為棱SB上的一點(diǎn),平面EDC平面SBC.(Ⅰ)證明:SE=2EB;(Ⅱ)求二面角A-DE-C的大小.2.(本小
2025-04-17 06:43
【總結(jié)】《立體幾何》專題練習(xí)題1.如圖正方體中,E、F分別為D1C1和B1C1的中點(diǎn),P、Q分別為A1C1與EF、AC與BD的交點(diǎn),(1)求證:D、B、F、E四點(diǎn)共面;(2)若A1C與面DBFE交于點(diǎn)R,求證:P、Q、R三點(diǎn)共線2.已知直線、異面,平面過(guò)且平行于,平面過(guò)且平行于,求證:∥.FECByZ
2025-04-17 13:06
【總結(jié)】2020屆高考數(shù)學(xué)復(fù)習(xí)強(qiáng)化雙基系列課件58《立體幾何總復(fù)習(xí)》
2024-11-11 08:47
【總結(jié)】常規(guī)幾何圖形的立體幾何問(wèn)題1.如圖,在長(zhǎng)方體中,點(diǎn)在棱的延長(zhǎng)線上,且.BEADC(Ⅰ)求證:∥平面;(Ⅱ)求證:平面平面;(Ⅲ)求四面體的體積.ABCPD,在四棱錐中,平面平面,,是等邊三角形,已知,.(1)求證:平面;(2)求三棱錐的體積.3.如圖,四棱錐
2025-04-17 08:18
【總結(jié)】專業(yè)整理分享文科立體幾何大題復(fù)習(xí) 一.解答題(共12小題)1.如圖1,在正方形ABCD中,點(diǎn),E,F(xiàn)分別是AB,BC的中點(diǎn),BD與EF交于點(diǎn)H,點(diǎn)G,R分別在線段DH,HB上,且.將△AED,△CFD,△BEF分別沿DE,DF,EF折起,使點(diǎn)A,B,C重合于點(diǎn)P,如圖2所示.
2025-04-17 01:27
【總結(jié)】空間幾何體空間幾何體的結(jié)構(gòu)柱、錐、臺(tái)、球的結(jié)構(gòu)特征簡(jiǎn)單幾何體的結(jié)構(gòu)特征三視圖柱、錐、臺(tái)、球的三視圖簡(jiǎn)單幾何體的三視圖直觀圖斜二測(cè)畫(huà)法平面圖形空間幾何體中心投影柱、錐、臺(tái)、球的表面積與體積平行投影畫(huà)圖識(shí)圖柱錐臺(tái)球圓錐圓臺(tái)
2025-01-14 00:38
【總結(jié)】主講教師:立體幾何復(fù)習(xí)例1.正方體A1B1C1D1-ABCD的棱長(zhǎng)為a,在AD1和BD上分別截取AP=BQ=a.求證:(1)PQ∥平面CD1;(2)PQ⊥BC.ACDD1A1B1C1BPQ例,四棱錐P-ABCD的底面ABCD是矩形,PA⊥平
2024-11-09 09:19
【總結(jié)】1.直線與平面平行的判定①判定定理:如果平面外一條直線和這個(gè)平面內(nèi)一條直線平行,那么這條直線和這個(gè)平面平行???面∥,面,∥aabba???②面面平行的性質(zhì):若兩個(gè)平面平行,則其中一個(gè)平面內(nèi)的任何直線與另一個(gè)平面平行。????∥,,∥aa??2.直線和平面垂直的判定①判定定理:如果一條直線和一個(gè)平面內(nèi)的兩條相交直線都垂直,那么這條直
2025-01-09 21:42