【導(dǎo)讀】,在平行四邊形ABCD中,E為AB的中點(diǎn),F(xiàn)為AD上一點(diǎn),EF交AC于G,AF=2cm,,△ABC中,AB<AC,在AB、AC上分別截取BD=CE,DE,BC的延長(zhǎng)線相交于點(diǎn)F,△ABC中,AB=,AC=4,BC=2,以AB為邊在C點(diǎn)的異側(cè)作等腰直角三角形△ABD,
【總結(jié)】專業(yè)資料分享三角形中作輔助線的常用方法舉例一、延長(zhǎng)已知邊構(gòu)造三角形:例如:如圖7-1:已知AC=BD,AD⊥AC于A,BC⊥BD于B,求證:AD=BC分析:欲證AD=BC,先證分別含有AD,BC的三角形全等,有幾種方案:△ADC與△BCD,△AOD與△BOC,△ABD與
2025-08-03 01:15
【總結(jié)】梯形常用輔助線的做法常見(jiàn)的梯形輔助線基本圖形如下:,把梯形的腰、兩底角等轉(zhuǎn)移到一個(gè)三角形中,同時(shí)還得到平行四邊形.【例1】已知:如圖,在梯形ABCD中,.求證:.分析:平移一腰BC到DE,將題中已知條件轉(zhuǎn)化在同一等腰三角形中解決,即AB=2CD.證明:過(guò)D作,交AB于E. ∵AB平行于CD,且,
2025-06-22 15:18
【總結(jié)】三角形中作輔助線的常用方法舉例一、延長(zhǎng)已知邊構(gòu)造三角形:例如:如圖7-1:已知AC=BD,AD⊥AC于A,BC⊥BD于B,求證:AD=BC分析:欲證AD=BC,先證分別含有AD,BC的三角形全等,有幾種方案:△ADC與△BCD,△AOD與△BOC,△ABD與△BAC,但根據(jù)現(xiàn)有條件,均無(wú)法證全等,差角的相等,因此可設(shè)法作出新的角,且讓此角作為兩個(gè)三角形的公共角。證明:分別
2025-08-03 00:50
【總結(jié)】專業(yè)資料分享圓中常見(jiàn)輔助線的做法一.遇到弦時(shí)(解決有關(guān)弦的問(wèn)題時(shí)),或作垂直于弦的半徑(或直徑)或再連結(jié)過(guò)弦的端點(diǎn)的半徑。作用:①利用垂徑定理;②利用圓心角及其所對(duì)的弧、弦和弦心距之間的關(guān)系;③利用弦的一半、弦心距和半徑組成直角三角形,根據(jù)勾股定理求
2025-05-16 03:14
【總結(jié)】幾何輔助線練習(xí)之旋轉(zhuǎn)類旋轉(zhuǎn)技巧同步訓(xùn)練題
2025-06-24 15:21
【總結(jié)】專業(yè)資料分享常見(jiàn)輔助線的作法有以下幾種:1)遇到等腰三角形,可作底邊上的高,利用“三線合一”的性質(zhì)解題,思維模式是全等變換中的“對(duì)折”.2)遇到三角形的中線,倍長(zhǎng)中線,使延長(zhǎng)線段與原中線長(zhǎng)相等,構(gòu)造全等三角形,利用的思維模式是全等變換中的“旋轉(zhuǎn)”.3)遇到角平分線,可以自
2025-05-16 02:07
【總結(jié)】線、角、相交線、平行線(n≥2)個(gè)點(diǎn),其中任何三點(diǎn)都不在同一直線上,那么每?jī)牲c(diǎn)畫一條直線,一共可以畫出n(n-1)條.〔n(n+1)+1〕個(gè)部分.,那么在這個(gè)圖形中共有線段的條數(shù)為n(n-1)條.(或延長(zhǎng)線)上任一點(diǎn)分線段為兩段,這兩條線段的中點(diǎn)的距離等于線段長(zhǎng)的一半.例:如圖,B在線段AC上,M是AB的中點(diǎn),N是BC的中點(diǎn).求證:MN=AC證明:∵M(jìn)是A
2025-08-03 01:12
【總結(jié)】梯形中的常見(jiàn)輔助線一、平移1、平移一腰:例1.如圖所示,在直角梯形ABCD中,∠A=90°,AB∥DC,AD=15,AB=16,BC=17.求CD的長(zhǎng).例2如圖,梯形ABCD的上底AB=3,下底CD=8,腰AD=4,求另一腰BC的取值范圍。2、平移兩腰:例3如圖,在梯形ABCD中,AD//BC,∠B+∠C=90
2025-06-22 16:00
【總結(jié)】平移腰作高補(bǔ)為三角形平移對(duì)角線其他方法轉(zhuǎn)化為三角形或平行四邊形等在梯形中常用的作輔助線方法開(kāi)動(dòng)腦筋靈活應(yīng)用ABCDEFABCDABCD
2024-12-07 16:27
【總結(jié)】常見(jiàn)的輔助線的作法“三線合一”法:遇到等腰三角形,可作底邊上的高,利用“三線合一”的性質(zhì)解題:倍長(zhǎng)中線,使延長(zhǎng)線段與原中線長(zhǎng)相等,構(gòu)造全等三角形:(1)可以自角平分線上的某一點(diǎn)向角的兩邊作垂線,(2)可以在角平分線上的一點(diǎn)作該角平分線的垂線與角的兩邊相交,形成一對(duì)全等三角形。(3)可以在該角的兩邊上,距離角的頂點(diǎn)相等長(zhǎng)度的位置上截取二點(diǎn),然后從這兩點(diǎn)再向角平分線上的某點(diǎn)作邊線,構(gòu)造一
2025-03-24 02:14
【總結(jié)】初中數(shù)學(xué)輔助線的添加方法一.添輔助線有二種情況:1按定義添輔助線:如證明二直線垂直可延長(zhǎng)使它們,相交后證交角為90°;證線段倍半關(guān)系可倍線段取中點(diǎn)或半線段加倍;證角的倍半關(guān)系也可類似添輔助線。2按基本圖形添輔助線:每個(gè)幾何定理都有與它相對(duì)應(yīng)的幾何圖形,我們把它叫做基本圖形,添輔助線往往是具有基本圖形的性質(zhì)而基本圖形不完整時(shí)補(bǔ)完整基本圖形,因此“添線”應(yīng)該叫做
2025-04-07 20:38
【總結(jié)】第一篇:輔助線幾何證明題 輔助線的幾何證明題 三角形輔助線做法 圖中有角平分線,可向兩邊作垂線。也可將圖對(duì)折看,對(duì)稱以后關(guān)系現(xiàn)。 角平分線平行線,等腰三角形來(lái)添。角平分線加垂線,三線合一試試看...
2024-10-22 20:13
【總結(jié)】(1)只見(jiàn)顯性中點(diǎn)而看不到隱藏的中點(diǎn);(2)挖掘出隱藏的中點(diǎn)后,卻不會(huì)將各中點(diǎn)條件合理地進(jìn)行篩選與重組;(3)構(gòu)造出待證全等三角形后,常常是找邊容易找角難,對(duì)于角相等的證明方法過(guò)于單一且不夠靈活.1、如圖,在等腰直角三角形ABC中,∠ABC=90°,D為邊AC的中點(diǎn),過(guò)點(diǎn)D作DE⊥DF,交AB于點(diǎn)E,交B
2025-07-26 00:14
【總結(jié)】無(wú)為三中八年級(jí)數(shù)學(xué)專題學(xué)習(xí)幾何證明中常見(jiàn)的“添輔助線”方法(2022年安徽)如圖,AD是△ABC的邊BC上的高,由下列條件中的某一個(gè)就能推出△ABC是等腰三角形的是_________________。(把所有正確答案的序號(hào)都填寫在橫線上)①∠BA
2025-05-06 12:02
【總結(jié)】攻擊線、操盤線、輔助線、生命線、決策線、趨勢(shì)線一、攻擊線所謂攻擊線就是我們?nèi)粘Kf(shuō)的五日均線。有的朋友覺(jué)得很可笑,五日均線還用講嗎,這個(gè)傻瓜都知道。事實(shí)上問(wèn)題就出在這里,越簡(jiǎn)單的你反而不會(huì)花大力氣去學(xué)習(xí)深究其里。這里需要給大家強(qiáng)調(diào)一點(diǎn),這些特定稱謂一般指常用的日線系統(tǒng),但攻擊線也可用于分時(shí)、周線、月線甚至是年線,如果你是中線持股者五周線就是你的攻擊線,其他依次類推。攻擊線作用有三
2025-06-28 01:47