【導(dǎo)讀】解析:選d,則d=a3-a2=2,因而a10=a2+8d=2+2×8=18.2.在等差數(shù)列{an}中,若a1,a2020為方程x2-10x+16=0的兩根,則a2+a1006+a2020=(). 解析:選,知a1+a2020=a2+a2020=2a1006=10,所以a2+a1006+a2020=15,故選B.3.?dāng)?shù)列{an}是公差不為0的等差數(shù)列,且a1,a3,a7為等比數(shù)列{bn}的連續(xù)三項(xiàng),則數(shù)列{bn}的公比。5.?dāng)?shù)列{an}的前n項(xiàng)和為Sn,若a1=1,an+1=3Sn()n≥1,則a6=(). 大家網(wǎng),大家的!更多精品在大家!∴an+2-an+1=3Sn+1-3Sn=3an+1,即an+2=4an+1.∴當(dāng)n=6時(shí),a6=3×46-2=3×44.6.已知數(shù)列{an}滿足a1=1,anan+1=2n,則a9+a10的值為________.?!郺2=2,2a3=22,∴a3=2.a8=a9=16,a10=32,故a9+a10=48.7.設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn,若a1=-11,a4+a6=-6,則當(dāng)Sn取最小值時(shí),n等于________.。a10>0,a10+a11<0,因此在數(shù)列{an}中,前10項(xiàng)均為正數(shù),第11項(xiàng)及后面各項(xiàng)均為負(fù)數(shù),且|a10|<|a11|<|a12|,又3bn-bn-1=n(n≥2),∴bn=13bn-1+13n(n≥2),