【導讀】Page:7167PP?mammod1??Proof.Let????mrr??,1beareducedsetofresiduesmodulom.Since??1,?ma,wehave. mimari??,11,??for1,,()im??.Consequently,forevery????mi??,1?there. exists??????mi???,1?suchthat. mrariimod??Moreover,??mararjimod?ifandonlyifji?,andso?set????m??,1and????marar??mrrrmmod21?????mrrrmmod21???Dividingby??mrrr??21,weobtain. mammod1??parmod11??Moreover,paapmod?foreveryintegera.1,?pa,??1??pp?,and. paappmod11????paapmod?theorem,????mammod1??madmod1?.Then??md???1.Weshallprovethat. aordmdivides??m?theorderofamodulom,then??maalkmod?ifandonlyif??dlkmod?.Inparticular,manmod1?ifandonlyifddividesn,andsoddivides??m?madmod1?.If??dlkmod?,then. dqlk??,andso. maaaaalqdldqlkmod????Conversely,supposethat??maalkmod?rdqlk???and10???dr.Since??1,?marmod1?Since10???r,andso. dlkmod?If)(mod1maan??,since. )(mod1)(mam??byEuler’stheorem.Forexample;let15?manda=8)15(??)15(mod178?)15(mod771?)15(mod44972??)15(mod132873??)15(mod19174??