freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

初中數(shù)學(xué)試卷分類匯編易錯壓軸選擇題精選:平行四邊形選擇題(含答案)(2)-資料下載頁

2025-04-01 22:48本頁面
  

【正文】 性質(zhì)可得∠BFE=2∠EFN,繼而得∠BFE=2∠DEF,判斷④錯誤.【詳解】∵四邊形ABCD是平行四邊形,∴AD=BC,AB=CD,AD//BC,∵AB=2AD,CD=2CF,∴CF=CB,∴∠CBF=∠CFB,∵CD∥AB,∴∠CFB=∠ABF,∴,故①正確;延長EF交BC的延長線與M,∵AD//BC,∴∠DEF=∠M,又∵∠DFE=∠CFM,DF=CF,∴△DFE與△CFM(AAS),∴EF=FM=EM,∵BF⊥AD,∴∠AEB=90176。,∵在平行四邊形ABCD中,AD∥BC,∴∠CBE=∠AEB=90176。,∴BF=EM,∴BF=EF,故②正確;∵EF=FM,∴S△BEF=S△BMF,∵△DFE≌△CFM,∴S△DFE=S△CFM,∴S△EBF=S△BMF=S△EDF+S△FBC,∴,故③正確;過點F作FN⊥BE,垂足為N,則∠FNE=90176。,∴∠AEB=∠FEN,∴AD//EF,∴∠DEF=∠EFN,又∵EF=FB,∴∠BFE=2∠EFN,∴∠BFE=2∠DEF,故④錯誤,所以正確的有3個,故選C.【點睛】本題考查了平行四邊形的性質(zhì),直角三角形斜邊中線的性質(zhì),等腰三角形的判斷與性質(zhì)等,綜合性較強(qiáng),有一定的難度,正確添加輔助線,熟練掌握和靈活運用相關(guān)知識是解題的關(guān)鍵.25.C【分析】想辦法證明S陰=S△ADE+S△DEC=S△AEC,再由EF∥AC,可得S△AEC=S△ACF解決問題.【詳解】連接AF、EC.∵BC=4CF,S△ABC=12,∴S△ACF=12=4,∵四邊形CDEF是平行四邊形,∴DE∥CF,EF∥AC,∴S△DEB=S△DEC,∴S陰=S△ADE+S△DEC=S△AEC,∵EF∥AC,∴S△AEC=S△ACF=4,∴S陰=4.故選C.【點睛】本題考查平行四邊形的性質(zhì)、三角形的面積、等高模型等知識,解題的關(guān)鍵是熟練掌握等高模型解決問題,學(xué)會用轉(zhuǎn)化的思想思考問題,屬于中考??碱}型.26.B【分析】先求證四邊形AFPE是矩形,再根據(jù)直線外一點到直線上任一點的距離,垂線段最短,利用面積法可求得AP最短時的長,然后即可求出AM最短時的長.【詳解】解:連接AP,在ABC中,AB=5,AC=12,BC=13,∴AB2+AC2=BC2,∴∠BAC=90176。,∵PE⊥AB,PF⊥AC,∴四邊形AFPE是矩形,∴EF=AP.∵M(jìn)是EF的中點,∴AM=AP,根據(jù)直線外一點到直線上任一點的距離,垂線段最短,即AP⊥BC時,AP最短,同樣AM也最短,∴S△ABC=,∴,∴AP最短時,AP=,∴當(dāng)AM最短時,AM=AP=.故選:B.【點睛】此題主要考查學(xué)生對勾股定理逆定理的應(yīng)用、矩形的判定和性質(zhì)、垂線段最短和直角三角形斜邊上的中線的理解和掌握,此題涉及到動點問題,有一定難度.27.B【分析】①連接CF,證明△ADF≌△CEF,得到△EDF是等腰直角三角形;②根據(jù)中點的性質(zhì)和直角三角形的性質(zhì)得到四邊形CDFE是菱形,利用正方形的判定定理進(jìn)行判斷;③當(dāng)DE最小時,DF也最小,利用垂線段的性質(zhì)求出DF的最小值,進(jìn)行計算即可;④根據(jù)△ADF≌△CEF,得到S四邊形CEFD=S△AFC;⑤由③的結(jié)論進(jìn)行計算即可.【詳解】①連接CF,∵△ABC是等腰直角三角形,且F是AB邊上的中點,∴∠FCB=∠A=∠B =45176。,CF=AF=FB,∵AD=CE,∴△ADF≌△CEF,∴EF=DF,∠AFD=∠CFE,∵∠AFD+∠CFD=90176。,∴∠CFE+∠CFD=∠EFD=90176。,∴△EDF是等腰直角三角形,①正確;②當(dāng)D、E分別為AC、BC中點,即DF、EF分別為Rt△AFC和Rt△BFC斜邊上的中線,∴CD=DF=AC,F(xiàn)E=EC=BC,∴CD=DF=FE=EC,四邊形CDFE是菱形,又∠C=90176。,∴四邊形CDFE是正方形,②錯誤;③由于△DEF是等腰直角三角形,因此當(dāng)DE最小時,DF也最小,當(dāng)DF⊥AC時,DE最小,此時EF=DF=BC=4.∴DE=,③錯誤;④∵△ADF≌△CEF,∴S△CEF=S△ADF,∴S四邊形CEFD=S△AFC,∴四邊形CDFE的面積保持不變,④正確;⑤由③可知當(dāng)DE最小時,DF也最小,DF的最小值是4,則DE的最小值為,當(dāng)△CEF面積最大時,此時△DEF的面積最?。藭rS△CEF=S四邊形CEFDS△DEF=S△AFCS△DEF=168=8,⑤正確;綜上,正確的是:①④⑤,故選:B.【點睛】本題考查了正方形的判定、等腰直角三角形的性質(zhì)、全等三角形的判定和性質(zhì),掌握正方形的判定定理、全等三角形的判定定理和性質(zhì)定理、理解點到直線的距離的概念是解題的關(guān)鍵.28.B【分析】連接CD,利用勾股定理列式求出AB,判斷出四邊形CFDE是矩形,根據(jù)矩形的對角線相等可得EF=CD,再根據(jù)垂線段最短可得CD⊥AB時,線段EF的值最小,然后根據(jù)三角形的面積公式列出方程求解即可.【詳解】如圖,連結(jié)CD.∵∠ACB=90176。,AC=3,BC=4,∴AB==5. ∵DE⊥AC,DF⊥BC,∠ACB=90176。,∴四邊形CFDE是矩形,∴EF=CD.由垂線段最短可得CD⊥AB時,線段EF的長最小,此時,S△ABC= BCAC=ABCD,即43=5CD,解得CD=,∴EF=.故選B.【點睛】本題考查了矩形的判定與性質(zhì),垂線段最短的性質(zhì),勾股定理,判斷出CD⊥AB時,線段EF的值最小是解題的關(guān)鍵,難點在于利用三角形的面積列出方程.29.B【分析】首先證明AB=AF=AD,然后再證明∠AFG=90176。,接下來,依據(jù)HL可證明△ABG≌△AFG,得到BG=FG,再利用勾股定理得出GE2=CG2+CE2,進(jìn)而求出BG即可.【詳解】解:在正方形ABCD中,AD=AB=BC=CD,∠D=∠B=∠BCD=90176。,∵將△ADE沿AE對折至△AFE,∴AD=AF,DE=EF,∠D=∠AFE=90176。,∴AB=AF,∠B=∠AFG=90176。,又∵AG=AG,在Rt△ABG和Rt△AFG中, ∴△ABG≌△AFG(HL);∴BG=FG(全等三角形對應(yīng)邊相等),設(shè)BG=FG=x,則GC=6x,∵E為CD的中點,∴CE=EF=DE=3,∴EG=3+x,∴在Rt△CEG中,32+(6x)2=(3+x)2(勾股定理),解得x=2,∴BG=2,故選B.【點睛】此題主要考查了勾股定理的綜合應(yīng)用、三角形全的判定和性質(zhì)以及翻折變換的性質(zhì),根據(jù)翻折變換的性質(zhì)得出對應(yīng)線段相等是解題關(guān)鍵.30.C【分析】由,得出∠BAC=90176。,則①正確;由等邊三角形的性質(zhì)得∠DAB=∠EAC=60176。,則∠DAE=150176。,由SAS證得△ABC≌△DBF,得AC=DF=AE=4,同理△ABC≌△EFC(SAS),得AB=EF=AD=3,得出四邊形AEFD是平行四邊形,則②正確;由平行四邊形的性質(zhì)得∠DFE=∠DAE=150176。,則③正確;∠FDA=180176。-∠DFE=30176。,過點作于點,則④不正確;即可得出結(jié)果.【詳解】解:∵,∴,∴∠BAC=90176。,∴AB⊥AC,故①正確;∵△ABD,△ACE都是等邊三角形,∴∠DAB=∠EAC=60176。,又∴∠BAC=90176。,∴∠DAE=150176。,∵△ABD和△FBC都是等邊三角形,∴BD=BA,BF=BC,∠DBF+∠FBA=∠ABC+∠ABF=60176。,∴∠DBF=∠ABC,在△ABC與△DBF中,∴△ABC≌△DBF(SAS),∴AC=DF=AE=4,同理可證:△ABC≌△EFC(SAS),∴AB=EF=AD=3,∴四邊形AEFD是平行四邊形,故②正確;∴∠DFE=∠DAE=150176。,故③正確;∴∠FDA=180176。∠DFE=180176。-150176。=30176。,過點作于點,∴,故④不正確;∴正確的個數(shù)是3個,故選:C.【點睛】本題考查了平行四邊形的判定與性質(zhì)、勾股定理的逆定理、全等三角形的判定與性質(zhì)、等邊三角形的性質(zhì)、平角、周角、平行是四邊形面積的計算等知識;熟練掌握平行四邊形的判定與性質(zhì)是解題的關(guān)鍵.
點擊復(fù)制文檔內(nèi)容
畢業(yè)設(shè)計相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號-1