freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

20xx-20xx天津中考數(shù)學(xué)培優(yōu)專題復(fù)習(xí)平行四邊形練習(xí)題-資料下載頁

2025-03-30 22:26本頁面
  

【正文】 物線的交點(diǎn)為E,連接AE,BE,當(dāng)△AEB的面積為7時,n=___________.(直接寫出答案)【答案】(1), A(3,0);(2)【解析】試題解析:(1)把點(diǎn)B的坐標(biāo)代入拋物線的解析式中,即可求出a的值,令y=0即可求出點(diǎn)A的坐標(biāo).(2)求出點(diǎn)D的坐標(biāo)即可求解;(3)運(yùn)用△AEB的面積為7,列式計算即可得解.試題解析:(1)當(dāng)時,由 ,得(舍去),(1分)∴A(3,0) (2)過D作DG⊥軸于G,BH⊥軸于H.∵CD∥AB,CD=AB∴,∴, ∴ (3) 13.如圖,在正方形ABCD中,點(diǎn)E在CD上,AF⊥AE交CB的延長線于F.求證:AE=AF.【答案】見解析【解析】【分析】根據(jù)同角的余角相等證得∠BAF=∠DAE,再利用正方形的性質(zhì)可得AB=AD,∠ABF=∠ADE=90176。,根據(jù)ASA判定△ABF≌△ADE,根據(jù)全等三角形的性質(zhì)即可證得AF=AE.【詳解】∵AF⊥AE,∴∠BAF+∠BAE=90176。,又∵∠DAE+∠BAE=90176。,∴∠BAF=∠DAE,∵四邊形ABCD是正方形,∴AB=AD,∠ABF=∠ADE=90176。,在△ABF和△ADE中,∴△ABF≌△ADE(ASA),∴AF=AE.【點(diǎn)睛】本題主要考查了正方形的性質(zhì)、全等三角形的判定和性質(zhì)等知識點(diǎn),證明△ABF≌△ADE是解決本題的關(guān)鍵.14.如圖1,在長方形紙片ABCD中,AB=mAD,其中m?1,將它沿EF折疊(點(diǎn)E.F分別在邊AB、CD上),使點(diǎn)B落在AD邊上的點(diǎn)M處,點(diǎn)C落在點(diǎn)N處,MN與CD相交于點(diǎn)P,其中0n?1.(1)如圖2,當(dāng)n=1(即M點(diǎn)與D點(diǎn)重合),求證:四邊形BEDF為菱形;(2)如圖3,當(dāng)(M為AD的中點(diǎn)),m的值發(fā)生變化時,求證:EP=AE+DP;(3)如圖1,當(dāng)m=2(即AB=2AD),n的值發(fā)生變化時,的值是否發(fā)生變化?說明理由.【答案】(1)證明見解析;(2)證明見解析;(3)值不變,理由見解析.【解析】試題分析:(1)由條件可知,當(dāng)n=1(即M點(diǎn)與D點(diǎn)重合),m=2時,AB=2AD,設(shè)AD=a,則AB=2a,由矩形的性質(zhì)可以得出△ADE≌△NDF,就可以得出AE=NF,DE=DF,在Rt△AED中,由勾股定理就可以表示出AE的值,再求出BE的值就可以得出結(jié)論.(2)延長PM交EA延長線于G,由條件可以得出△PDM≌△GAM,△EMP≌△EMG由全等三角形的性質(zhì)就可以得出結(jié)論.(3)如圖1,連接BM交EF于點(diǎn)Q,過點(diǎn)F作FK⊥AB于點(diǎn)K,交BM于點(diǎn)O,通過證明△ABM∽△KFE,就可以得出,即,由AB=2AD=2BC,BK=CF就可以得出的值是為定值.(1)∵四邊形ABCD是矩形,∴AB=CD,AD=BC,∠A=∠B=∠C=∠D=90176。.∵AB=mAD,且n=2,∴AB=2AD.∵∠ADE+∠EDF=90176。,∠EDF+∠NDF=90176。,∴∠ADE=∠NDF.在△ADE和△NDF中,∠A=∠N,AD=ND,∠ADE=∠NDF,∴△ADE≌△NDF(ASA).∴AE=NF,DE=DF.∵FN=FC,∴AE=FC.∵AB=CD,∴ABAE=CDCF. ∴BE=DF. ∴BE=DE.Rt△AED中,由勾股定理,得,即,∴AE=AD.∴BE=2ADAD=.∴.(2)如圖3,延長PM交EA延長線于G,∴∠GAM=90176。.∵M(jìn)為AD的中點(diǎn),∴AM=DM.∵四邊形ABCD是矩形,∴AB=CD,AD=BC,∠A=∠B=∠C=∠D=90176。,AB∥CD.∴∠GAM=∠PDM.在△GAM和△PDM中,∠GAM=∠PDM,AM=DM,∠AMG=∠DMP,∴△GAM≌△PDM(ASA).∴MG=MP.在△EMP和△EMG中,PM=GM,∠PME=∠GME,ME=ME,∴△EMP≌△EMG(SAS).∴EG=EP.∴AG+AE=EP.∴PD+AE=EP,即EP=AE+DP.(3),值不變,理由如下:如圖1,連接BM交EF于點(diǎn)Q,過點(diǎn)F作FK⊥AB于點(diǎn)K,交BM于點(diǎn)O,∵EM=EB,∠MEF=∠BEF,∴EF⊥MB,即∠FQO=90176。.∵四邊形FKBC是矩形,∴KF=BC,F(xiàn)C=KB.∵∠FKB=90176。,∴∠KBO+∠KOB=90176。.∵∠QOF+∠QFO=90176。,∠QOF=∠KOB,∴∠KBO=∠OFQ.∵∠A=∠EKF=90176。,∴△ABM∽△KFE.∴即.∵AB=2AD=2BC,BK=CF,∴.∴的值不變.考點(diǎn):;;;;.15.正方形ABCD的邊長為1,對角線AC與BD相交于點(diǎn)O,點(diǎn)E是AB邊上的一個動點(diǎn)(點(diǎn)E不與點(diǎn)A、B重合),CE與BD相交于點(diǎn)F,設(shè)線段BE的長度為x.(1)如圖1,當(dāng)AD=2OF時,求出x的值;(2)如圖2,把線段CE繞點(diǎn)E順時針旋轉(zhuǎn)90176。,使點(diǎn)C落在點(diǎn)P處,連接AP,設(shè)△APE的面積為S,試求S與x的函數(shù)關(guān)系式并求出S的最大值.【答案】(1)x=﹣1;(2)S=﹣(x﹣)2+(0<x<1),當(dāng)x=時,S的值最大,最大值為,.【解析】試題分析:(1)過O作OM∥AB交CE于點(diǎn)M,如圖1,由平行線等分線段定理得到CM=ME,根據(jù)三角形的中位線定理得到AE=2OM=2OF,得到OM=OF,于是得到BF=BE=x,求得OF=OM=解方程,即可得到結(jié)果;(2)過P作PG⊥AB交AB的延長線于G,如圖2,根據(jù)已知條件得到∠ECB=∠PEG,根據(jù)全等三角形的性質(zhì)得到EB=PG=x,由三角形的面積公式得到S=(1﹣x)?x,根據(jù)二次函數(shù)的性質(zhì)即可得到結(jié)論.試題解析:(1)過O作OM∥AB交CE于點(diǎn)M,如圖1,∵OA=OC,∴CM=ME,∴AE=2OM=2OF,∴OM=OF,∴,∴BF=BE=x,∴OF=OM=,∵AB=1,∴OB=,∴,∴x=﹣1;(2)過P作PG⊥AB交AB的延長線于G,如圖2,∵∠CEP=∠EBC=90176。,∴∠ECB=∠PEG,∵PE=EC,∠EGP=∠CBE=90176。,在△EPG與△CEB中,∴△EPG≌△CEB,∴EB=PG=x,∴AE=1﹣x,∴S=(1﹣x)?x=﹣x2+x=﹣(x﹣)2+,(0<x<1),∵﹣<0,∴當(dāng)x=時,S的值最大,最大值為,.考點(diǎn):四邊形綜合題
點(diǎn)擊復(fù)制文檔內(nèi)容
范文總結(jié)相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號-1