freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

20xx-20xx初三數(shù)學(xué)-二次函數(shù)的專(zhuān)項(xiàng)-培優(yōu)練習(xí)題及答案-資料下載頁(yè)

2025-03-30 22:23本頁(yè)面
  

【正文】 O=∠POA的點(diǎn)M的坐標(biāo).【答案】(1)點(diǎn)P的坐標(biāo)為(3,4),拋物線的解析式為y=﹣x2+3x+4;(2)當(dāng)m=0時(shí),S取最小值,最小值為;當(dāng)m=3時(shí),S取最大值,最大值為5.(3)滿(mǎn)足∠MPO=∠POA的點(diǎn)M的坐標(biāo)為(0,4)或(,).【解析】【分析】(1)代入y=c可求出點(diǎn)C、P的坐標(biāo),利用一次函數(shù)圖象上點(diǎn)的坐標(biāo)特征可求出點(diǎn)A、B的坐標(biāo),再由△PCB≌△BOA即可得出b、c的值,進(jìn)而可得出點(diǎn)P的坐標(biāo)及拋物線的解析式;(2)利用二次函數(shù)圖象上點(diǎn)的坐標(biāo)特征求出點(diǎn)F的坐標(biāo),過(guò)點(diǎn)M作ME∥y軸,交直線AB于點(diǎn)E,由點(diǎn)M的橫坐標(biāo)可得出點(diǎn)M、E的坐標(biāo),進(jìn)而可得出ME的長(zhǎng)度,再利用三角形的面積公式可找出S=﹣(m﹣3)2+5,由m的取值范圍結(jié)合二次函數(shù)的性質(zhì)即可求出S的最大值及最小值;(3)分兩種情況考慮:①當(dāng)點(diǎn)M在線段OP上方時(shí),由CP∥x軸利用平行線的性質(zhì)可得出:當(dāng)點(diǎn)C、M重合時(shí),∠MPO=∠POA,由此可找出點(diǎn)M的坐標(biāo);②當(dāng)點(diǎn)M在線段OP下方時(shí),在x正半軸取點(diǎn)D,連接DP,使得DO=DP,此時(shí)∠DPO=∠POA,設(shè)點(diǎn)D的坐標(biāo)為(n,0),則DO=n,DP=,由DO=DP可求出n的值,進(jìn)而可得出點(diǎn)D的坐標(biāo),由點(diǎn)P、D的坐標(biāo)利用待定系數(shù)法即可求出直線PD的解析式,再聯(lián)立直線PD及拋物線的解析式成方程組,通過(guò)解方程組求出點(diǎn)M的坐標(biāo).綜上此題得解.【詳解】(1)當(dāng)y=c時(shí),有c=﹣x2+bx+c,解得:x1=0,x2=b,∴點(diǎn)C的坐標(biāo)為(0,c),點(diǎn)P的坐標(biāo)為(b,c),∵直線y=﹣3x+3與x軸、y軸分別交于A、B兩點(diǎn),∴點(diǎn)A的坐標(biāo)為(1,0),點(diǎn)B的坐標(biāo)為(0,3),∴OB=3,OA=1,BC=c﹣3,CP=b,∵△PCB≌△BOA,∴BC=OA,CP=OB,∴b=3,c=4,∴點(diǎn)P的坐標(biāo)為(3,4),拋物線的解析式為y=﹣x2+3x+4;(2)當(dāng)y=0時(shí),有﹣x2+3x+4=0,解得:x1=﹣1,x2=4,∴點(diǎn)F的坐標(biāo)為(4,0),過(guò)點(diǎn)M作ME∥y軸,交直線AB于點(diǎn)E,如圖1所示,∵點(diǎn)M的橫坐標(biāo)為m(0≤m≤4),∴點(diǎn)M的坐標(biāo)為(m,﹣m2+3m+4),點(diǎn)E的坐標(biāo)為(m,﹣3m+3),∴ME=﹣m2+3m+4﹣(﹣3m+3)=﹣m2+6m+1,∴S=OA?ME=﹣m2+3m+=﹣(m﹣3)2+5,∵﹣<0,0≤m≤4,∴當(dāng)m=0時(shí),S取最小值,最小值為;當(dāng)m=3時(shí),S取最大值,最大值為5;(3)①當(dāng)點(diǎn)M在線段OP上方時(shí),∵CP∥x軸,∴當(dāng)點(diǎn)C、M重合時(shí),∠MPO=∠POA,∴點(diǎn)M的坐標(biāo)為(0,4);②當(dāng)點(diǎn)M在線段OP下方時(shí),在x正半軸取點(diǎn)D,連接DP,使得DO=DP,此時(shí)∠DPO=∠POA,設(shè)點(diǎn)D的坐標(biāo)為(n,0),則DO=n,DP=,∴n2=(n﹣3)2+16,解得:n=,∴點(diǎn)D的坐標(biāo)為(,0),設(shè)直線PD的解析式為y=kx+a(k≠0),將P(3,4)、D(,0)代入y=kx+a,解得:,∴直線PD的解析式為y=﹣x+,聯(lián)立直線PD及拋物線的解析式成方程組,得:,解得:,.∴點(diǎn)M的坐標(biāo)為(,).綜上所述:滿(mǎn)足∠MPO=∠POA的點(diǎn)M的坐標(biāo)為(0,4)或(,).【點(diǎn)睛】本題考查了待定系數(shù)法求一次函數(shù)解析式、一次(二次)函數(shù)圖象上點(diǎn)的坐標(biāo)特征、全等三角形的性質(zhì)、二次函數(shù)的性質(zhì)、三角形的面積以及等腰三角形的性質(zhì),解題的關(guān)鍵是:(1)利用全等三角形的性質(zhì)求出b、c的值;(2)利用三角形的面積公式找出S=﹣(m﹣3)2+5;(3)分點(diǎn)M在線段OP上方和點(diǎn)M在線段OP下方兩種情況求出點(diǎn)M的坐標(biāo).14.如圖,拋物線y=ax2+c(a≠0)經(jīng)過(guò)C(2,0),D(0,﹣1)兩點(diǎn),并與直線y=kx交于A、B兩點(diǎn),直線l過(guò)點(diǎn)E(0,﹣2)且平行于x軸,過(guò)A、B兩點(diǎn)分別作直線l的垂線,垂足分別為點(diǎn)M、N.(1)求此拋物線的解析式;(2)求證:AO=AM;(3)探究:①當(dāng)k=0時(shí),直線y=kx與x軸重合,求出此時(shí)的值;②試說(shuō)明無(wú)論k取何值,的值都等于同一個(gè)常數(shù).【答案】解:(1)y=x2﹣1(2)詳見(jiàn)解析(3)詳見(jiàn)解析【解析】【分析】(1)把點(diǎn)C、D的坐標(biāo)代入拋物線解析式求出a、c,即可得解。(2)根據(jù)拋物線解析式設(shè)出點(diǎn)A的坐標(biāo),然后求出AO、AM的長(zhǎng),即可得證。(3)①k=0時(shí),求出AM、BN的長(zhǎng),然后代入計(jì)算即可得解;②設(shè)點(diǎn)A(x1,x12﹣1),B(x2,x22﹣1),然后表示出,再聯(lián)立拋物線與直線解析式,消掉未知數(shù)y得到關(guān)于x的一元二次方程,利用根與系數(shù)的關(guān)系表示出x1+x2,x1?2,并求出x12+x22,x12?x22,然后代入進(jìn)行計(jì)算即可得解。【詳解】解:(1)∵拋物線y=ax2+c(a≠0)經(jīng)過(guò)C(2,0),D(0,﹣1),∴,解得?!鄴佄锞€的解析式為y=x2﹣1。(2)證明:設(shè)點(diǎn)A的坐標(biāo)為(m,m2﹣1),則?!咧本€l過(guò)點(diǎn)E(0,﹣2)且平行于x軸,∴點(diǎn)M的縱坐標(biāo)為﹣2?!郃M=m2﹣1﹣(﹣2)=m2+1?!郃O=AM。(3)①k=0時(shí),直線y=kx與x軸重合,點(diǎn)A、B在x軸上,∴AM=BN=0﹣(﹣2)=2,∴。②k取任何值時(shí),設(shè)點(diǎn)A(x1,x12﹣1),B(x2,x22﹣1),則。聯(lián)立,消掉y得,x2﹣4kx﹣4=0,由根與系數(shù)的關(guān)系得,x1+x2=4k,x1?x2=﹣4,∴x12+x22=(x1+x2)2﹣2x1?x2=16k2+8,x12?x22=16?!唷!酂o(wú)論k取何值,的值都等于同一個(gè)常數(shù)1。15.如圖1,拋物線與軸交于點(diǎn)和點(diǎn),與軸交于點(diǎn),拋物線的頂點(diǎn)為軸于點(diǎn).將拋物線平移后得到頂點(diǎn)為且對(duì)稱(chēng)軸為直的拋物線.(1)求拋物線的解析式;(2)如圖2,在直線上是否存在點(diǎn),使是等腰三角形?若存在,請(qǐng)求出所有點(diǎn)的坐標(biāo):若不存在,請(qǐng)說(shuō)明理由;(3)點(diǎn)為拋物線上一動(dòng)點(diǎn),過(guò)點(diǎn)作軸的平行線交拋物線于點(diǎn),點(diǎn)關(guān)于直線的對(duì)稱(chēng)點(diǎn)為,若以為頂點(diǎn)的三角形與全等,求直線的解析式.【答案】(1)拋物線的解析式為;(2)點(diǎn)的坐標(biāo)為,;(3)的解析式為或.【解析】分析:(1)把和代入求出a、c的值,進(jìn)而求出y1,再根據(jù)平移得出y2即可;(2)拋物線的對(duì)稱(chēng)軸為,設(shè),已知,過(guò)點(diǎn)作軸于,分三種情況時(shí)行討論等腰三角形的底和腰,得到關(guān)于t的方程,解方程即可;(3)設(shè),則,根據(jù)對(duì)稱(chēng)性得,分點(diǎn)在直線的左側(cè)或右側(cè)時(shí),結(jié)合以構(gòu)成的三角形與全等求解即可.詳解:(1)由題意知,解得, 所以,拋物線y的解析式為;因?yàn)閽佄锞€平移后得到拋物線,且頂點(diǎn)為,所以拋物線的解析式為,即: ;(2)拋物線的對(duì)稱(chēng)軸為,設(shè),已知,過(guò)點(diǎn)作軸于,則 , ,當(dāng)時(shí),即,解得或;當(dāng)時(shí),得,無(wú)解;當(dāng)時(shí),得,解得。綜上可知,在拋物線的對(duì)稱(chēng)軸上存在點(diǎn)使是等腰三角形,此時(shí)點(diǎn)的坐標(biāo)為,.(3)設(shè),則,因?yàn)殛P(guān)于對(duì)稱(chēng),所以,情況一:當(dāng)點(diǎn)在直線的左側(cè)時(shí), ,又因?yàn)橐詷?gòu)成的三角形與全等,當(dāng)且時(shí),可求得,即點(diǎn)與點(diǎn)重合所以,設(shè)的解析式,則有解得,即的解析式為,當(dāng)且時(shí),無(wú)解,情況二:當(dāng)點(diǎn)在直線右側(cè)時(shí), ,同理可得的解析式為,綜上所述, 的解析式為或.點(diǎn)睛:本題主要考查了二次函數(shù)綜合題,此題涉及到待定系數(shù)法求函數(shù)解析式、等腰三角形的判定與性質(zhì)、全等三角形的性質(zhì)等知識(shí),解答(1)問(wèn)的關(guān)鍵是求出a、c的值,解答(2)、(3)問(wèn)的關(guān)鍵是正確地作出圖形,進(jìn)行分類(lèi)討論解答,此題有一定的難度.
點(diǎn)擊復(fù)制文檔內(nèi)容
數(shù)學(xué)相關(guān)推薦
文庫(kù)吧 www.dybbs8.com
備案圖鄂ICP備17016276號(hào)-1