freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

20xx-20xx初三數(shù)學-二次函數(shù)的專項-培優(yōu)易錯試卷練習題含答案-資料下載頁

2025-03-30 22:23本頁面
  

【正文】 若點是位于直線上方拋物線上的一動點,以為相鄰兩邊作平行四邊形,當平行四邊形的面積最大時,求此時四邊形的面積及點的坐標;⑶在拋物線的對稱軸上是否存在定點,使拋物線上任意一點到點的距離等于到直線的距離,若存在,求出定點的坐標;若不存在,請說明理由.【答案】⑴;⑵當 ,□MANB=△= ,此時;⑶存在. 當時,無論取任何實數(shù),均有. 理由見解析.【解析】【分析】(1)利用待定系數(shù)法,將A,B的坐標代入y=ax2+2x+c即可求得二次函數(shù)的解析式;(2)過點M作MH⊥x軸于H,交直線AB于K,求出直線AB的解析式,設點M(a,a2+2a+3),則K(a,a+1),利用函數(shù)思想求出MK的最大值,再求出△AMB面積的最大值,可推出此時平行四邊形MANB的面積S及點M的坐標;(3)如圖2,分別過點B,C作直線y=的垂線,垂足為N,H,設拋物線對稱軸上存在點F,使拋物線C上任意一點P到點F的距離等于到直線y=的距離,其中F(1,a),連接BF,CF,則可根據(jù)BF=BN,CF=CN兩組等量關系列出關于a的方程組,解方程組即可.【詳解】(1)由題意把點(1,0)、(2,3)代入y=ax2+2x+c,得,解得a=1,c=3,∴此拋物線C函數(shù)表達式為:y=x2+2x+3;(2)如圖1,過點M作MH⊥x軸于H,交直線AB于K,將點(1,0)、(2,3)代入y=kx+b中,得,解得,k=1,b=1,∴yAB=x+1,設點M(a,a2+2a+3),則K(a,a+1),則MK=a2+2a+3(a+1)=(a)2+,根據(jù)二次函數(shù)的性質可知,當a=時,MK有最大長度,∴S△AMB最大=S△AMK+S△BMK=MK?AH+MK?(xBxH)=MK?(xBxA)=3=,∴以MA、MB為相鄰的兩邊作平行四邊形MANB,當平行四邊形MANB的面積最大時,S最大=2S△AMB最大=2=,M(,);(3)存在點F,∵y=x2+2x+3=(x1)2+4,∴對稱軸為直線x=1, 當y=0時,x1=1,x2=3,∴拋物線與點x軸正半軸交于點C(3,0),如圖2,分別過點B,C作直線y=的垂線,垂足為N,H,拋物線對稱軸上存在點F,使拋物線C上任意一點P到點F的距離等于到直線y=的距離,設F(1,a),連接BF,CF,則BF=BN=3=,CF=CH=,由題意可列:,解得,a=,∴F(1,).【點睛】此題考查了待定系數(shù)法求解析式,還考查了用函數(shù)思想求極值等,解題關鍵是能夠判斷出當平行四邊形MANB的面積最大時,△ABM的面積最大,且此時線段MK的長度也最大.14.如圖,已知拋物線過點A(,3) 和B(3,0),過點A作直線AC//x軸,交y軸與點C.(1)求拋物線的解析式; (2)在拋物線上取一點P,過點P作直線AC的垂線,垂足為D,連接OA,使得以A,D,P為頂點的三角形與△AOC相似,求出對應點P的坐標; (3)拋物線上是否存在點Q,使得?若存在,求出點Q的坐標;若不存在,請說明理由. 【答案】(1);(2)P點坐標為(4 ,6)或(, );(3)Q點坐標(3,0)或(2,15)【解析】【分析】(1)把A與B坐標代入拋物線解析式求出a與b的值,即可確定出解析式;(2)設P坐標為,表示出AD與PD,由相似分兩種情況得比例求出x的值,即可確定出P坐標;(3)存在,求出已知三角形AOC邊OA上的高h,過O作OM⊥OA,截取OM=h,與y軸交于點N,分別確定出M與N坐標,利用待定系數(shù)法求出直線MN解析式,與拋物線解析式聯(lián)立求出Q坐標即可.【詳解】(1)把,和點,代入拋物線得:,解得:,則拋物線解析式為;(2)當在直線上方時,設坐標為,則有,當時,即,整理得:,即,解得:,即或(舍去),此時,;當時,即,整理得:,即,解得:,即或(舍去),此時,;當點時,也滿足;當在直線下方時,同理可得:的坐標為,綜上,的坐標為,或,或,或;(3)在中,,根據(jù)勾股定理得:, ,,邊上的高為,過作,截取,過作,交軸于點,如圖所示:在中,即,過作軸,在中,,即,設直線解析式為,把坐標代入得:,即,即,聯(lián)立得:,解得:或,即,或,則拋物線上存在點,使得,此時點的坐標為,或,.【點睛】二次函數(shù)綜合題,涉及的知識有:待定系數(shù)法求函數(shù)解析式,相似三角形的判定與性質,點到直線的距離公式,熟練掌握待定系數(shù)法是解本題的關鍵.15.如圖1,四邊形是矩形,點的坐標為,沿以每秒1個單位長度的速度向點運動,同時點從點出發(fā),沿以每秒2個單位長度的速度向點運動,.(1)當時,線段的中點坐標為________;(2)當與相似時,求的值;(3)當時,拋物線經(jīng)過、兩點,與軸交于點,拋物線的頂點為,使,若存在,求出所有滿足條件的點坐標;若不存在,說明理由.【答案】(1)的中點坐標是;(2)或;(3),.【解析】分析:(1)先根據(jù)時間t=2,和速度可得動點P和Q的路程OP和AQ的長,再根據(jù)中點坐標公式可得結論;(2)根據(jù)矩形的性質得:∠B=∠PAQ=90176。,所以當△CBQ與△PAQ相似時,存在兩種情況:①當△PAQ∽△QBC時,②當△PAQ∽△CBQ時,分別列方程可得t的值;(3)根據(jù)t=1求拋物線的解析式,根據(jù)Q(3,2),M(0,2),可得MQ∥x軸,∴KM=KQ,KE⊥MQ,畫出符合條件的點D,證明△KEQ∽△QMH,列比例式可得點D的坐標,同理根據(jù)對稱可得另一個點D.詳解:(1)如圖1,∵點A的坐標為(3,0),∴OA=3,當t=2時,OP=t=2,AQ=2t=4,∴P(2,0),Q(3,4),∴線段PQ的中點坐標為:(,),即(,2);故答案為:(,2);(2)如圖1,∵四邊形OABC是矩形,∴∠B=∠PAQ=90176?!喈敗鰿BQ與△PAQ相似時,存在兩種情況:①當△PAQ∽△QBC時,∴,4t215t+9=0,(t3)(t)=0,t1=3(舍),t2=,②當△PAQ∽△CBQ時,∴,t29t+9=0,t=,∵0≤t≤6,>7,∴x=不符合題意,舍去,綜上所述,當△CBQ與△PAQ相似時,t的值是或;(3)當t=1時,P(1,0),Q(3,2),把P(1,0),Q(3,2)代入拋物線y=x2+bx+c中得:,解得:,∴拋物線:y=x23x+2=(x)2,∴頂點k(,),∵Q(3,2),M(0,2),∴MQ∥x軸,作拋物線對稱軸,交MQ于E,∴KM=KQ,KE⊥MQ,∴∠MKE=∠QKE=∠MKQ,如圖2,∠MQD=∠MKQ=∠QKE,設DQ交y軸于H,∵∠HMQ=∠QEK=90176。,∴△KEQ∽△QMH,∴,∴,∴MH=2,∴H(0,4),易得HQ的解析式為:y=x+4,則,x23x+2=x+4,解得:x1=3(舍),x2=,∴D(,);同理,在M的下方,y軸上存在點H,如圖3,使∠HQM=∠MKQ=∠QKE,由對稱性得:H(0,0),易得OQ的解析式:y=x,則,x23x+2=x,解得:x1=3(舍),x2=,∴D(,);綜上所述,點D的坐標為:D(,)或(,).點睛:本題是二次函數(shù)與三角形相似的綜合問題,主要考查相似三角形的判定和性質的綜合應用,三角形和四邊形的面積,二次函數(shù)的最值問題的應用,函數(shù)的交點等知識,本題比較復雜,注意用t表示出線段長度,再利用相似即可找到線段之間的關系,代入可解決問題.
點擊復制文檔內(nèi)容
環(huán)評公示相關推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號-1