freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

20xx-20xx初三數(shù)學(xué)-二次函數(shù)的專項(xiàng)-培優(yōu)易錯(cuò)試卷練習(xí)題含答案-資料下載頁(yè)

2025-03-30 22:23本頁(yè)面
  

【正文】 若點(diǎn)是位于直線上方拋物線上的一動(dòng)點(diǎn),以為相鄰兩邊作平行四邊形,當(dāng)平行四邊形的面積最大時(shí),求此時(shí)四邊形的面積及點(diǎn)的坐標(biāo);⑶在拋物線的對(duì)稱軸上是否存在定點(diǎn),使拋物線上任意一點(diǎn)到點(diǎn)的距離等于到直線的距離,若存在,求出定點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.【答案】⑴;⑵當(dāng) ,□MANB=△= ,此時(shí);⑶存在. 當(dāng)時(shí),無(wú)論取任何實(shí)數(shù),均有. 理由見(jiàn)解析.【解析】【分析】(1)利用待定系數(shù)法,將A,B的坐標(biāo)代入y=ax2+2x+c即可求得二次函數(shù)的解析式;(2)過(guò)點(diǎn)M作MH⊥x軸于H,交直線AB于K,求出直線AB的解析式,設(shè)點(diǎn)M(a,a2+2a+3),則K(a,a+1),利用函數(shù)思想求出MK的最大值,再求出△AMB面積的最大值,可推出此時(shí)平行四邊形MANB的面積S及點(diǎn)M的坐標(biāo);(3)如圖2,分別過(guò)點(diǎn)B,C作直線y=的垂線,垂足為N,H,設(shè)拋物線對(duì)稱軸上存在點(diǎn)F,使拋物線C上任意一點(diǎn)P到點(diǎn)F的距離等于到直線y=的距離,其中F(1,a),連接BF,CF,則可根據(jù)BF=BN,CF=CN兩組等量關(guān)系列出關(guān)于a的方程組,解方程組即可.【詳解】(1)由題意把點(diǎn)(1,0)、(2,3)代入y=ax2+2x+c,得,解得a=1,c=3,∴此拋物線C函數(shù)表達(dá)式為:y=x2+2x+3;(2)如圖1,過(guò)點(diǎn)M作MH⊥x軸于H,交直線AB于K,將點(diǎn)(1,0)、(2,3)代入y=kx+b中,得,解得,k=1,b=1,∴yAB=x+1,設(shè)點(diǎn)M(a,a2+2a+3),則K(a,a+1),則MK=a2+2a+3(a+1)=(a)2+,根據(jù)二次函數(shù)的性質(zhì)可知,當(dāng)a=時(shí),MK有最大長(zhǎng)度,∴S△AMB最大=S△AMK+S△BMK=MK?AH+MK?(xBxH)=MK?(xBxA)=3=,∴以MA、MB為相鄰的兩邊作平行四邊形MANB,當(dāng)平行四邊形MANB的面積最大時(shí),S最大=2S△AMB最大=2=,M(,);(3)存在點(diǎn)F,∵y=x2+2x+3=(x1)2+4,∴對(duì)稱軸為直線x=1, 當(dāng)y=0時(shí),x1=1,x2=3,∴拋物線與點(diǎn)x軸正半軸交于點(diǎn)C(3,0),如圖2,分別過(guò)點(diǎn)B,C作直線y=的垂線,垂足為N,H,拋物線對(duì)稱軸上存在點(diǎn)F,使拋物線C上任意一點(diǎn)P到點(diǎn)F的距離等于到直線y=的距離,設(shè)F(1,a),連接BF,CF,則BF=BN=3=,CF=CH=,由題意可列:,解得,a=,∴F(1,).【點(diǎn)睛】此題考查了待定系數(shù)法求解析式,還考查了用函數(shù)思想求極值等,解題關(guān)鍵是能夠判斷出當(dāng)平行四邊形MANB的面積最大時(shí),△ABM的面積最大,且此時(shí)線段MK的長(zhǎng)度也最大.14.如圖,已知拋物線過(guò)點(diǎn)A(,3) 和B(3,0),過(guò)點(diǎn)A作直線AC//x軸,交y軸與點(diǎn)C.(1)求拋物線的解析式; (2)在拋物線上取一點(diǎn)P,過(guò)點(diǎn)P作直線AC的垂線,垂足為D,連接OA,使得以A,D,P為頂點(diǎn)的三角形與△AOC相似,求出對(duì)應(yīng)點(diǎn)P的坐標(biāo); (3)拋物線上是否存在點(diǎn)Q,使得?若存在,求出點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由. 【答案】(1);(2)P點(diǎn)坐標(biāo)為(4 ,6)或(, );(3)Q點(diǎn)坐標(biāo)(3,0)或(2,15)【解析】【分析】(1)把A與B坐標(biāo)代入拋物線解析式求出a與b的值,即可確定出解析式;(2)設(shè)P坐標(biāo)為,表示出AD與PD,由相似分兩種情況得比例求出x的值,即可確定出P坐標(biāo);(3)存在,求出已知三角形AOC邊OA上的高h(yuǎn),過(guò)O作OM⊥OA,截取OM=h,與y軸交于點(diǎn)N,分別確定出M與N坐標(biāo),利用待定系數(shù)法求出直線MN解析式,與拋物線解析式聯(lián)立求出Q坐標(biāo)即可.【詳解】(1)把,和點(diǎn),代入拋物線得:,解得:,則拋物線解析式為;(2)當(dāng)在直線上方時(shí),設(shè)坐標(biāo)為,則有,當(dāng)時(shí),即,整理得:,即,解得:,即或(舍去),此時(shí),;當(dāng)時(shí),即,整理得:,即,解得:,即或(舍去),此時(shí),;當(dāng)點(diǎn)時(shí),也滿足;當(dāng)在直線下方時(shí),同理可得:的坐標(biāo)為,綜上,的坐標(biāo)為,或,或,或;(3)在中,,根據(jù)勾股定理得:, ,,邊上的高為,過(guò)作,截取,過(guò)作,交軸于點(diǎn),如圖所示:在中,即,過(guò)作軸,在中,,即,設(shè)直線解析式為,把坐標(biāo)代入得:,即,即,聯(lián)立得:,解得:或,即,或,則拋物線上存在點(diǎn),使得,此時(shí)點(diǎn)的坐標(biāo)為,或,.【點(diǎn)睛】二次函數(shù)綜合題,涉及的知識(shí)有:待定系數(shù)法求函數(shù)解析式,相似三角形的判定與性質(zhì),點(diǎn)到直線的距離公式,熟練掌握待定系數(shù)法是解本題的關(guān)鍵.15.如圖1,四邊形是矩形,點(diǎn)的坐標(biāo)為,沿以每秒1個(gè)單位長(zhǎng)度的速度向點(diǎn)運(yùn)動(dòng),同時(shí)點(diǎn)從點(diǎn)出發(fā),沿以每秒2個(gè)單位長(zhǎng)度的速度向點(diǎn)運(yùn)動(dòng),.(1)當(dāng)時(shí),線段的中點(diǎn)坐標(biāo)為_(kāi)_______;(2)當(dāng)與相似時(shí),求的值;(3)當(dāng)時(shí),拋物線經(jīng)過(guò)、兩點(diǎn),與軸交于點(diǎn),拋物線的頂點(diǎn)為,使,若存在,求出所有滿足條件的點(diǎn)坐標(biāo);若不存在,說(shuō)明理由.【答案】(1)的中點(diǎn)坐標(biāo)是;(2)或;(3),.【解析】分析:(1)先根據(jù)時(shí)間t=2,和速度可得動(dòng)點(diǎn)P和Q的路程OP和AQ的長(zhǎng),再根據(jù)中點(diǎn)坐標(biāo)公式可得結(jié)論;(2)根據(jù)矩形的性質(zhì)得:∠B=∠PAQ=90176。,所以當(dāng)△CBQ與△PAQ相似時(shí),存在兩種情況:①當(dāng)△PAQ∽△QBC時(shí),②當(dāng)△PAQ∽△CBQ時(shí),分別列方程可得t的值;(3)根據(jù)t=1求拋物線的解析式,根據(jù)Q(3,2),M(0,2),可得MQ∥x軸,∴KM=KQ,KE⊥MQ,畫出符合條件的點(diǎn)D,證明△KEQ∽△QMH,列比例式可得點(diǎn)D的坐標(biāo),同理根據(jù)對(duì)稱可得另一個(gè)點(diǎn)D.詳解:(1)如圖1,∵點(diǎn)A的坐標(biāo)為(3,0),∴OA=3,當(dāng)t=2時(shí),OP=t=2,AQ=2t=4,∴P(2,0),Q(3,4),∴線段PQ的中點(diǎn)坐標(biāo)為:(,),即(,2);故答案為:(,2);(2)如圖1,∵四邊形OABC是矩形,∴∠B=∠PAQ=90176?!喈?dāng)△CBQ與△PAQ相似時(shí),存在兩種情況:①當(dāng)△PAQ∽△QBC時(shí),∴,4t215t+9=0,(t3)(t)=0,t1=3(舍),t2=,②當(dāng)△PAQ∽△CBQ時(shí),∴,t29t+9=0,t=,∵0≤t≤6,>7,∴x=不符合題意,舍去,綜上所述,當(dāng)△CBQ與△PAQ相似時(shí),t的值是或;(3)當(dāng)t=1時(shí),P(1,0),Q(3,2),把P(1,0),Q(3,2)代入拋物線y=x2+bx+c中得:,解得:,∴拋物線:y=x23x+2=(x)2,∴頂點(diǎn)k(,),∵Q(3,2),M(0,2),∴MQ∥x軸,作拋物線對(duì)稱軸,交MQ于E,∴KM=KQ,KE⊥MQ,∴∠MKE=∠QKE=∠MKQ,如圖2,∠MQD=∠MKQ=∠QKE,設(shè)DQ交y軸于H,∵∠HMQ=∠QEK=90176。,∴△KEQ∽△QMH,∴,∴,∴MH=2,∴H(0,4),易得HQ的解析式為:y=x+4,則,x23x+2=x+4,解得:x1=3(舍),x2=,∴D(,);同理,在M的下方,y軸上存在點(diǎn)H,如圖3,使∠HQM=∠MKQ=∠QKE,由對(duì)稱性得:H(0,0),易得OQ的解析式:y=x,則,x23x+2=x,解得:x1=3(舍),x2=,∴D(,);綜上所述,點(diǎn)D的坐標(biāo)為:D(,)或(,).點(diǎn)睛:本題是二次函數(shù)與三角形相似的綜合問(wèn)題,主要考查相似三角形的判定和性質(zhì)的綜合應(yīng)用,三角形和四邊形的面積,二次函數(shù)的最值問(wèn)題的應(yīng)用,函數(shù)的交點(diǎn)等知識(shí),本題比較復(fù)雜,注意用t表示出線段長(zhǎng)度,再利用相似即可找到線段之間的關(guān)系,代入可解決問(wèn)題.
點(diǎn)擊復(fù)制文檔內(nèi)容
環(huán)評(píng)公示相關(guān)推薦
文庫(kù)吧 www.dybbs8.com
備案圖鄂ICP備17016276號(hào)-1