freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

20xx-20xx初三數(shù)學(xué)-二次函數(shù)的專項(xiàng)-培優(yōu)-易錯(cuò)-難題練習(xí)題-資料下載頁

2025-03-30 22:23本頁面
  

【正文】 得的利潤y關(guān)于x的函數(shù)關(guān)系式.(3)這40天中該網(wǎng)店第幾天獲得的利潤最大?最大利潤是多少?【答案】(1)第10天或第35天該商品的銷售單價(jià)為35元/件(2)(3)這40天中該網(wǎng)店第21天獲得的利潤最大?最大利潤是725元【解析】【分析】(1)分別將q=35代入銷售單價(jià)關(guān)于x的函數(shù)關(guān)系式,求出x即可.(2)應(yīng)用利潤=銷售收入-銷售成本列式即可.(3)應(yīng)用二次函數(shù)和反比例函數(shù)的性質(zhì),分別求出最大值比較即得所求.【詳解】解:(1)當(dāng)1≤x≤20時(shí),令,解得;;當(dāng)21≤x≤40時(shí),令,解得;.∴第10天或第35天該商品的銷售單價(jià)為35元/件.(2)當(dāng)1≤x≤20時(shí),;當(dāng)21≤x≤40時(shí),.∴y關(guān)于x的函數(shù)關(guān)系式為.(3)當(dāng)1≤x≤20時(shí),∵,∴當(dāng)x=15時(shí),y有最大值y1,且y1=.當(dāng)21≤x≤40時(shí),∵26250>0,∴隨著x的增大而減小,∴當(dāng)x=21時(shí),有最大值y2,且.∵y1<y2,∴這40天中該網(wǎng)店第21天獲得的利潤最大?最大利潤是725元.13.已知拋物線的圖象如圖所示:(1)將該拋物線向上平移2個(gè)單位,分別交x軸于A、B兩點(diǎn),交y軸于點(diǎn)C,則平移后的解析式為 ?。?)判斷△ABC的形狀,并說明理由.(3)在拋物線對稱軸上是否存在一點(diǎn)P,使得以A、C、P為頂點(diǎn)的三角形是等腰三角形?若存在,求出點(diǎn)P的坐標(biāo);若不存在,說明理由.【答案】(1);(2)△ABC是直角三角形;(3)存在,、.【解析】【分析】(1)根據(jù)函數(shù)圖象的平移規(guī)律,可得新的函數(shù)解析式;(2)根據(jù)自變量與函數(shù)值的對應(yīng)關(guān)系,可得A,B,C的坐標(biāo),根據(jù)勾股定理及逆定理,可得答案;(3)根據(jù)等腰三角形的定義,分三種情況,可得關(guān)于n的方程,根據(jù)解方程,可得答案.【詳解】(1)將該拋物線向上平移2個(gè)單位,得:yx2x+2.故答案為yx2x+2;(2)當(dāng)y=0時(shí),x2x+2=0,解得:x1=﹣4,x2=1,即B(﹣4,0),A(1,0).當(dāng)x=0時(shí),y=2,即C(0,2).AB=1﹣(﹣4)=5,AB2=25,AC2=(1﹣0)2+(0﹣2)2=5,BC2=(﹣4﹣0)2+(0﹣2)2=20.∵AC2+BC2=AB2,∴△ABC是直角三角形;(3)yx2x+2的對稱軸是x,設(shè)P(,n),AP2=(1)2+n2n2,CP2(2﹣n)2,AC2=12+22=:①當(dāng)AP=AC時(shí),AP2=AC2,n2=5,方程無解;②當(dāng)AP=CP時(shí),AP2=CP2,n2(2﹣n)2,解得:n=0,即P1(,0);③當(dāng)AC=CP時(shí),AC2=CP2,(2﹣n)2=5,解得:n1=2,n2=2,P2(,2),P3(,2).綜上所述:在拋物線對稱軸上存在一點(diǎn)P,使得以A、C、P為頂點(diǎn)的三角形是等腰三角形,點(diǎn)P的坐標(biāo)(,0),(,2),(,2).【點(diǎn)睛】本題考查了二次函數(shù)綜合題.解(1)的關(guān)鍵是二次函數(shù)圖象的平移,解(2)的關(guān)鍵是利用勾股定理及逆定理;解(3)的關(guān)鍵是利用等腰三角形的定義得出關(guān)于n的方程,要分類討論,以防遺漏.14.如圖,拋物線y=ax2+bx經(jīng)過△OAB的三個(gè)頂點(diǎn),其中點(diǎn)A(1,),點(diǎn)B(3,﹣),O為坐標(biāo)原點(diǎn).(1)求這條拋物線所對應(yīng)的函數(shù)表達(dá)式;(2)若P(4,m),Q(t,n)為該拋物線上的兩點(diǎn),且n<m,求t的取值范圍;(3)若C為線段AB上的一個(gè)動(dòng)點(diǎn),當(dāng)點(diǎn)A,點(diǎn)B到直線OC的距離之和最大時(shí),求∠BOC的大小及點(diǎn)C的坐標(biāo).【答案】(1);(2)t>4;(3)∠BOC=60176。,C(,)【解析】分析:(1)將已知點(diǎn)坐標(biāo)代入y=ax2+bx,求出a、b的值即可;(2)利用拋物線增減性可解問題;(3)觀察圖形,點(diǎn)A,點(diǎn)B到直線OC的距離之和小于等于AB;同時(shí)用點(diǎn)A(1,),點(diǎn)B(3,﹣)求出相關(guān)角度.詳解:(1)把點(diǎn)A(1,),點(diǎn)B(3,﹣)分別代入y=ax2+bx得 ,解得∴y=﹣(2)由(1)拋物線開口向下,對稱軸為直線x=,當(dāng)x>時(shí),y隨x的增大而減小,∴當(dāng)t>4時(shí),n<m.(3)如圖,設(shè)拋物線交x軸于點(diǎn)F,分別過點(diǎn)A、B作AD⊥OC于點(diǎn)D,BE⊥OC于點(diǎn)E∵AC≥AD,BC≥BE,∴AD+BE≤AC+BE=AB,∴當(dāng)OC⊥AB時(shí),點(diǎn)A,點(diǎn)B到直線OC的距離之和最大.∵A(1,),點(diǎn)B(3,﹣),∴∠AOF=60176。,∠BOF=30176。,∴∠AOB=90176。,∴∠ABO=30176。.當(dāng)OC⊥AB時(shí),∠BOC=60176。,點(diǎn)C坐標(biāo)為(,).點(diǎn)睛:本題考查綜合考查用待定系數(shù)法求二次函數(shù)解析式,拋物線的增減性.解答問題時(shí)注意線段最值問題的轉(zhuǎn)化方法.15.如圖,拋物線y=ax2+c(a≠0)經(jīng)過C(2,0),D(0,﹣1)兩點(diǎn),并與直線y=kx交于A、B兩點(diǎn),直線l過點(diǎn)E(0,﹣2)且平行于x軸,過A、B兩點(diǎn)分別作直線l的垂線,垂足分別為點(diǎn)M、N.(1)求此拋物線的解析式;(2)求證:AO=AM;(3)探究:①當(dāng)k=0時(shí),直線y=kx與x軸重合,求出此時(shí)的值;②試說明無論k取何值,的值都等于同一個(gè)常數(shù).【答案】解:(1)y=x2﹣1(2)詳見解析(3)詳見解析【解析】【分析】(1)把點(diǎn)C、D的坐標(biāo)代入拋物線解析式求出a、c,即可得解。(2)根據(jù)拋物線解析式設(shè)出點(diǎn)A的坐標(biāo),然后求出AO、AM的長,即可得證。(3)①k=0時(shí),求出AM、BN的長,然后代入計(jì)算即可得解;②設(shè)點(diǎn)A(x1,x12﹣1),B(x2,x22﹣1),然后表示出,再聯(lián)立拋物線與直線解析式,消掉未知數(shù)y得到關(guān)于x的一元二次方程,利用根與系數(shù)的關(guān)系表示出x1+x2,x1?2,并求出x12+x22,x12?x22,然后代入進(jìn)行計(jì)算即可得解?!驹斀狻拷猓海?)∵拋物線y=ax2+c(a≠0)經(jīng)過C(2,0),D(0,﹣1),∴,解得。∴拋物線的解析式為y=x2﹣1。(2)證明:設(shè)點(diǎn)A的坐標(biāo)為(m,m2﹣1),則?!咧本€l過點(diǎn)E(0,﹣2)且平行于x軸,∴點(diǎn)M的縱坐標(biāo)為﹣2?!郃M=m2﹣1﹣(﹣2)=m2+1?!郃O=AM。(3)①k=0時(shí),直線y=kx與x軸重合,點(diǎn)A、B在x軸上,∴AM=BN=0﹣(﹣2)=2,∴。②k取任何值時(shí),設(shè)點(diǎn)A(x1,x12﹣1),B(x2,x22﹣1),則。聯(lián)立,消掉y得,x2﹣4kx﹣4=0,由根與系數(shù)的關(guān)系得,x1+x2=4k,x1?x2=﹣4,∴x12+x22=(x1+x2)2﹣2x1?x2=16k2+8,x12?x22=16。∴?!酂o論k取何值,的值都等于同一個(gè)常數(shù)1。
點(diǎn)擊復(fù)制文檔內(nèi)容
小學(xué)相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號-1