freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內容

20xx-20xx中考數(shù)學平行四邊形綜合經典題-資料下載頁

2025-03-30 22:21本頁面
  

【正文】 ,∵∠GHE=∠DCE,∠HGE=∠DEC,EG=DE,∴△HGE≌△CED(AAS),∴GH=CE,HE=CD.∵CE=BF,∴GH=BF.∵GH∥BF,∴四邊形GHBF是矩形,∴GF=BH,F(xiàn)G∥CH,∴FG∥CE.∵四邊形ABCD是正方形,∴CD=BC,∴HE=BC,∴HE+EB=BC+EB,∴BH=EC,∴FG=EC;(3)∵四邊形ABCD是正方形,∴BC=CD,∠FBC=∠ECD=90176。.在△CBF與△DCE中,∵BF=CE,∠FBC=∠ECD,BC=DC,∴△CBF≌△DCE(SAS),∴∠BCF=∠CDE,CF=DE.∵EG=DE,∴CF=EG.∵DE⊥EG,∴∠DEC+∠CEG=90176。.∵∠CDE+∠DEC=90176。,∴∠CDE=∠CEG,∴∠BCF=∠CEG,∴CF∥EG,∴四邊形CEGF平行四邊形,∴FG∥CE,F(xiàn)G=CE.14.已知一次函數(shù)y=x+3的圖象與x軸、y軸分別交于A、B兩點,以線段AB為直角邊在第二象限內左等腰直角三角形ABC,∠BAC=90176。,如圖1所示.(1)填空:AB= ,BC= .(2)將△ABC繞點B逆時針旋轉,①當AC與x軸平行時,則點A的坐標是②當旋轉角為90176。時,得到△BDE,如圖2所示,求過B、D兩點直線的函數(shù)關系式.③在②的條件下,旋轉過程中AC掃過的圖形的面積是多少?(3)將△ABC向右平移到△A′B′C′的位置,點C′為直線AB上的一點,請直接寫出△ABC掃過的圖形的面積.【答案】(1):5;5;(2)①(0,﹣2);②直線BD的解析式為y=﹣x+3;③S=π;(3)△ABC掃過的面積為.【解析】試題分析:(1)根據(jù)坐標軸上的點的坐標特征,結合一次函數(shù)的解析式求出A、B兩點的坐標,利用勾股定理即可解答;(2)①因為B(0,3),所以OB=3,所以AB=5,所以AO=ABBO=53=2,所以A(0,2);②過點C作CF⊥OA與點F,證明△AOB≌△CFA,得到點C的坐標,求出直線AC解析式,根據(jù)AC∥BD,所以直線BD的解析式的k值與直線AC的解析式k值相同,設出解析式,即可解答.③利用旋轉的性質進而得出A,B,C對應點位置進而得出答案,再利用以BC為半徑90176。圓心角的扇形面積減去以AB為半徑90176。圓心角的扇形面積求出答案;(3)利用平移的性質進而得出△ABC掃過的圖形是平行四邊形的面積.試題解析:(1)∵一次函數(shù)y=x+3的圖象與x軸、y軸分別交于A、B兩點,∴A(4,0),B(0,3),∴AO=4,BO=3,在Rt△AOB中,AB=,∵等腰直角三角形ABC,∠BAC=90176。,∴BC=;(2)①如圖1,∵B(0,3),∴OB=3,∵AB=5,∴AO=ABBO=53=2,∴A(0,2).當在x軸上方時,點A的坐標為(0,8),②如圖2,過點C作CF⊥OA與點F,∵△ABC為等腰直角三角形,∴∠BAC=90176。,AB=AC,∴∠BAO+∠CAF=90176。,∵∠OBA+∠BAO=90176。,∴∠CAF=∠OBA,在△AOB和△CFA中,∴△AOB≌△CFA(AAS);∴OA=CF=4,OB=AF=3,∴OF=7,CF=4,∴C(7,4)∵A(4,0)設直線AC解析式為y=kx+b,將A與C坐標代入得:,解得:,則直線AC解析式為y=x,∵將△ABC繞點B逆時針旋轉,當旋轉角為90176。時,得到△BDE,∴∠ABD=90176。,∵∠CAB=90176。,∴∠ABD=∠CAB=90176。,∴AC∥BD,∴設直線BD的解析式為y=x+b1,把B(0,3)代入解析式的:b1=3,∴直線BD的解析式為y=x+3;③因為旋轉過程中AC掃過的圖形是以BC為半徑90176。圓心角的扇形面積減去以AB為半徑90176。圓心角的扇形面積,所以可得:S=;(3)將△ABC向右平移到△A′B′C′的位置,△ABC掃過的圖形是一個平行四邊形和三角形ABC,如圖3:將C點的縱坐標代入一次函數(shù)y=x+3,求得C′的橫坐標為,平行四邊CAA′C′的面積為(7+)4=,三角形ABC的面積為55=△ABC掃過的面積為:.考點:幾何變換綜合題.15.如圖1,在菱形ABCD中,ABC=60176。,若點E在AB的延長線上,EF∥AD,EF=BE,點P是DE的中點,連接FP并延長交AD于點G.(1)過D作DHAB,垂足為H,若DH=,BE=AB,求DG的長;(2)連接CP,求證:CPFP;(3)如圖2,在菱形ABCD中,ABC=60176。,若點E在CB的延長線上運動,點F在AB的延長線上運動,且BE=BF,連接DE,點P為DE的中點,連接FP、CP,那么第(2)問的結論成立嗎?若成立,求出的值;若不成立,請說明理由.【答案】(1)1;(2)見解析;(3).【解析】試題分析:(1)根據(jù)菱形得出DA∥BC,CD=CB,∠CDG=∠CBA=60176。,則∠DAH=∠ABC=60176。,根據(jù)DH⊥AB得出∠DHA=90176。,根據(jù)Rt△ADH的正弦值得出AD的長度,然后得出BE的長度,然后證明△PDG≌△PEF,得出DG=EF,根據(jù)EF∥AD,AD∥BC得出EF∥BC,則說明△BEF為正三角形,從而得出DG的長度;(2)連接CG、CF,根據(jù)△PDG≌△PEF得出PG=PF,然后證明△CDG≌△CBF,從而得到CG=CF,根據(jù)PG=PF得出垂直;(3)過D作EF的平行線,交FP延長于點G,連接CG、CF證△PEF≌△PDG,然后證明△CDG≌△CBF,從而得出∠GCE=120176。,根據(jù)Rt△CPF求出比值.試題解析:(1)解:∵四邊形ABCD為菱形 ∴DA∥BC CD=CB ∠CDG=∠CBA=60176。 ∴∠DAH=∠ABC=60176?!逥H⊥AB ∴∠DHA=90176。 在Rt△ADH中 sin∠DAH=∴AD=∴BE=AB=4=1 ∵EF∥AD ∴∠PDG=∠PEB ∵P為DE的中點 ∴PD=PE∵∠DPG=∠EPF ∴△PDG≌△PEF ∴DG=EF ∵EF∥AD AD∥BC ∴EF∥BC∴∠FEB=∠CBA=60176。 ∵BE=EF ∴△BEF為正三角形 ∴EF=BE=1 ∴DG=EF=證明:連接CG、CF由(1)知 △PDG≌△PEF ∴PG=PF在△CDG與△CBF中 易證:∠CDG=∠CBF=60176。 CD=CB BF=EF=DG ∴△CDG≌△CBF∴CG=CF ∵PG=PF ∴CP⊥GF(3)如圖:CP⊥GF仍成立理由如下:過D作EF的平行線,交FP延長于點G連接CG、CF證△PEF≌△PDG ∴DG=EF=BF ∵DG∥EF ∴∠GDP=∠EFP ∵DA∥BC ∴∠ADP=∠PEC∴∠GDP-∠ADP=∠EFP-∠PEC ∴∠GDA=∠BEF=60176。 ∴∠CDG=∠ADC+∠GDA=120176?!摺螩BF=180176。-∠EBF=120176。 ∴∠CBF=∠CDG ∵CD=BC DG=BF ∴△CDG≌△CBF∴CG=CF ∠DCG=∠FCE ∵PG=PF ∴CP⊥PF ∠GCP=∠FCP∵∠DCP=180-∠ABC=120176。 ∴∠DCG+∠GCE=120176。 ∴∠FCE+∠GCE=120176。 即∠GCE=120176?!唷螰CP=∠GCE=60176。 在Rt△CPF中 tan∠FCP=tan60176。==考點:三角形全等的證明與性質.
點擊復制文檔內容
環(huán)評公示相關推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號-1