freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

20xx-20xx中考數(shù)學(xué)壓軸題之平行四邊形(中考題型整理-突破提升)附答案-資料下載頁(yè)

2025-03-30 22:21本頁(yè)面
  

【正文】 (1)題所得的拋物線的解析式,可確定拋物線的對(duì)稱軸方程以及B、C點(diǎn)的坐標(biāo),由CE∥x軸,可知C、E關(guān)于對(duì)稱軸對(duì)稱。根據(jù)A、C點(diǎn)求得直線AC的解析式,根據(jù)B、E點(diǎn)求出直線BE的解析式,聯(lián)立方程求得的解,即為F點(diǎn)的坐標(biāo);由E、C、F、D的坐標(biāo)可知DF和EC互相垂直平分,則可判定四邊形CDEF為菱形.【詳解】(1)∵拋物線y=mx2+2mx+n經(jīng)過(guò)A(﹣3,0),C(0,﹣)兩點(diǎn),∴,解得,∴拋物線解析式為y=x2+x﹣;(2)∵y=x2+x﹣,∴拋物線對(duì)稱軸為直線x=﹣1,∵CE∥x軸,∴C、E關(guān)于對(duì)稱軸對(duì)稱,∵C(0,﹣),∴E(﹣2,﹣),∵A、B關(guān)于對(duì)稱軸對(duì)稱,∴B(1,0),設(shè)直線AC、BE解析式分別為y=kx+b,y=k′x+b′,則由題意可得,解得,∴直線AC、BE解析式分別為y=﹣x﹣,y=x﹣,聯(lián)立兩直線解析式可得,解得,∴F點(diǎn)坐標(biāo)為(﹣1,﹣1);(3)四邊形CDEF是菱形.證明:∵y=x2+x﹣=(x+1)2﹣2,∴D(﹣1,﹣2),∵F(﹣1,﹣1),∴DF⊥x軸,且CE∥x軸,∴DF⊥CE,∵C(0,﹣),且F(﹣1,﹣1),D(﹣1,﹣2),∴DF和CE互相平分,∴四邊形CDEF是菱形.【點(diǎn)睛】本題考查菱形的判定方法,二次函數(shù)的性質(zhì),以及二次函數(shù)與二元一次方程組.13.如圖,在正方形ABCD中,點(diǎn)E在CD上,AF⊥AE交CB的延長(zhǎng)線于F.求證:AE=AF.【答案】見(jiàn)解析【解析】【分析】根據(jù)同角的余角相等證得∠BAF=∠DAE,再利用正方形的性質(zhì)可得AB=AD,∠ABF=∠ADE=90176。,根據(jù)ASA判定△ABF≌△ADE,根據(jù)全等三角形的性質(zhì)即可證得AF=AE.【詳解】∵AF⊥AE,∴∠BAF+∠BAE=90176。,又∵∠DAE+∠BAE=90176。,∴∠BAF=∠DAE,∵四邊形ABCD是正方形,∴AB=AD,∠ABF=∠ADE=90176。,在△ABF和△ADE中,∴△ABF≌△ADE(ASA),∴AF=AE.【點(diǎn)睛】本題主要考查了正方形的性質(zhì)、全等三角形的判定和性質(zhì)等知識(shí)點(diǎn),證明△ABF≌△ADE是解決本題的關(guān)鍵.14.已知,以為邊在外作等腰,其中.(1)如圖①,若,求的度數(shù).(2)如圖②,,.①若,的長(zhǎng)為_(kāi)_____.②若改變的大小,但,的面積是否變化?若不變,求出其值;若變化,說(shuō)明變化的規(guī)律.【答案】(1)120176。;(2)①2;②2【解析】試題分析:(1)根據(jù)SAS,可首先證明△AEC≌△ABD,再利用全等三角形的性質(zhì),可得對(duì)應(yīng)角相等,根據(jù)三角形的外角的定理,可求出∠BFC的度數(shù);(2)①如圖2,在△ABC外作等邊△BAE,連接CE,利用旋轉(zhuǎn)法證明△EAC≌△BAD,可證∠EBC=90176。,EC=BD=6,因?yàn)锽C=4,在Rt△BCE中,由勾股定理求BE即可;②過(guò)點(diǎn)B作BE∥AH,并在BE上取BE=2AH,連接EA,EC.并取BE的中點(diǎn)K,連接AK,仿照(2)利用旋轉(zhuǎn)法證明△EAC≌△BAD,求得EC=DB,利用勾股定理即可得出結(jié)論.試題解析:解:(1)∵AE=AB,AD=AC,∵∠EAB=∠DAC=60176。,∴∠EAC=∠EAB+∠BAC,∠DAB=∠DAC+∠BAC,∴∠EAC=∠DAB,在△AEC和△ABD中∴△AEC≌△ABD(SAS),∴∠AEC=∠ABD,∵∠BFC=∠BEF+∠EBF=∠AEB+∠ABE,∴∠BFC=∠AEB+∠ABE=120176。,故答案為120176。;(2)①如圖2,以AB為邊在△ABC外作正三角形ABE,連接CE.由(1)可知△EAC≌△BAD.∴EC=BD.∴EC=BD=6,∵∠BAE=60176。,∠ABC=30176。,∴∠EBC=90176。.在RT△EBC中,EC=6,BC=4,∴EB===2∴AB=BE=2.②若改變?chǔ)?,β的大小,但?β=90176。,△ABC的面積不變化,以下證明:如圖2,作AH⊥BC交BC于H,過(guò)點(diǎn)B作BE∥AH,并在BE上取BE=2AH,連接EA,EC.并取BE的中點(diǎn)K,連接AK.∵AH⊥BC于H,∴∠AHC=90176。.∵BE∥AH,∴∠EBC=90176。.∵∠EBC=90176。,BE=2AH,∴EC2=EB2+BC2=4AH2+BC2.∵K為BE的中點(diǎn),BE=2AH,∴BK=AH.∵BK∥AH,∴四邊形AKBH為平行四邊形.又∵∠EBC=90176。,∴四邊形AKBH為矩形.∠ABE=∠ACD,∴∠AKB=90176。.∴AK是BE的垂直平分線.∴AB=AE.∵AB=AE,AC=AD,∠ABE=∠ACD,∴∠EAB=∠DAC,∴∠EAB+∠EAD=∠DAC+∠EAD,即∠EAC=∠BAD,在△EAC與△BAD中∴△EAC≌△BAD.∴EC=BD=6.在RT△BCE中,BE==2,∴AH=BE=,∴S△ABC=BC?AH=2考點(diǎn):全等三角形的判定與性質(zhì);等腰三角形的性質(zhì)15.(本題滿分10分)如圖1,已知矩形紙片ABCD中,AB=6cm,若將該紙片沿著過(guò)點(diǎn)B的直線折疊(折痕為BM),點(diǎn)A恰好落在CD邊的中點(diǎn)P處.(1)求矩形ABCD的邊AD的長(zhǎng).(2)若P為CD邊上的一個(gè)動(dòng)點(diǎn),折疊紙片,使得A與P重合,折痕為MN,其中M在邊AD上,N在邊BC上,如圖2所示.設(shè)DP=x cm,DM=y(tǒng) cm,試求y與x的函數(shù)關(guān)系式,并指出自變量x的取值范圍.(3)①當(dāng)折痕MN的端點(diǎn)N在AB上時(shí),求當(dāng)△PCN為等腰三角形時(shí)x的值;②當(dāng)折痕MN的端點(diǎn)M在CD上時(shí),設(shè)折疊后重疊部分的面積為S,試求S與x之間的函數(shù)關(guān)系式【答案】(1)AD=3;(2)y=-其中,0<x<3;(3)x=;(4)S=.【解析】試題分析:(1)根據(jù)折疊圖形的性質(zhì)和勾股定理求出AD的長(zhǎng)度;(2)根據(jù)折疊圖形的性質(zhì)以及Rt△MPD的勾股定理求出函數(shù)關(guān)系式;(3)過(guò)點(diǎn)N作NQ⊥CD,根據(jù)Rt△NPQ的勾股定理進(jìn)行求解;(4)根據(jù)Rt△ADM的勾股定理求出MP與x的函數(shù)關(guān)系式,然后得出函數(shù)關(guān)系式.試題解析:(1)根據(jù)折疊可得BP=AB=6cm CP=3cm 根據(jù)Rt△PBC的勾股定理可得:AD=3.(2)由折疊可知AM=MP,在Rt△MPD中,∴∴y=-其中,0<x<3.(3)當(dāng)點(diǎn)N在AB上,x≥3, ∴PC≤3,而PN≥3,NC≥3.∴△PCN為等腰三角形,只可能NC=NP.過(guò)N點(diǎn)作NQ⊥CD,垂足為Q,在Rt△NPQ中,∴解得x=.(4)當(dāng)點(diǎn)M在CD上時(shí),N在AB上,可得四邊形ANPM為菱形.設(shè)MP=y(tǒng),在Rt△ADM中,即∴ y=.∴ S=考點(diǎn):函數(shù)的性質(zhì)、勾股定理.
點(diǎn)擊復(fù)制文檔內(nèi)容
環(huán)評(píng)公示相關(guān)推薦
文庫(kù)吧 www.dybbs8.com
備案圖鄂ICP備17016276號(hào)-1