freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

20xx-20xx中考數(shù)學(xué)壓軸題之平行四邊形(中考題型整理-突破提升)及詳細答案-資料下載頁

2025-03-30 22:21本頁面
  

【正文】 形的性質(zhì)得到,利用等腰三角形的性質(zhì)得到∠BAC=∠MAN,根據(jù)相似三角形的性質(zhì)即可得到結(jié)論;(3)如圖3,連接AB,AN,根據(jù)正方形的性質(zhì)得到∠ABC=∠BAC=45176。,∠MAN=45176。,根據(jù)相似三角形的性質(zhì)得出,得到BM=2,CM=8,再根據(jù)勾股定理即可得到答案.詳解:(1)NC∥AB,理由如下:∵△ABC與△MN是等邊三角形,∴AB=AC,AM=AN,∠BAC=∠MAN=60176。,∴∠BAM=∠CAN,在△ABM與△ACN中, ,∴△ABM≌△ACN(SAS),∴∠B=∠ACN=60176。,∵∠ANC+∠ACN+∠CAN=∠ANC+60176。+∠CAN=180176。,∴∠ANC+∠MAN+∠BAM=∠ANC+60176。+∠CAN=∠BAN+∠ANC=180176。,∴CN∥AB; (2)∠ABC=∠ACN,理由如下:∵=1且∠ABC=∠AMN,∴△ABC~△AMN∴,∵AB=BC,∴∠BAC=(180176。﹣∠ABC),∵AM=MN∴∠MAN=(180176。﹣∠AMN),∵∠ABC=∠AMN,∴∠BAC=∠MAN,∴∠BAM=∠CAN,∴△ABM~△ACN,∴∠ABC=∠ACN;(3)如圖3,連接AB,AN,∵四邊形ADBC,AMEF為正方形,∴∠ABC=∠BAC=45176。,∠MAN=45176。,∴∠BAC﹣∠MAC=∠MAN﹣∠MAC即∠BAM=∠CAN,∵,∴,∴△ABM~△ACN∴,∴=cos45176。=,∴,∴BM=2,∴CM=BC﹣BM=8,在Rt△AMC,AM=,∴EF=AM=2.點睛:本題是四邊形綜合題目,考查了正方形的性質(zhì)、等邊三角形的性質(zhì)、等腰三角形的性質(zhì)、全等三角形的性質(zhì)定理和判定定理、相似三角形的性質(zhì)定理和判定定理等知識;本題綜合性強,有一定難度,證明三角形全等和三角形相似是解決問題的關(guān)鍵.14.小明在矩形紙片上畫正三角形,他的做法是:①對折矩形紙片ABCD(ABBC),使AB與DC重合,得到折痕EF,把紙片展平;②沿折痕BG折疊紙片,使點C落在EF上的點P處,再折出PB、PC,最后用筆畫出△PBC(圖1).(1)求證:圖1中的 PBC是正三角形: (2)如圖2,小明在矩形紙片HIJK上又畫了一個正三角形IMN,其中IJ=6cm,且HM=JN.①求證:IH=IJ②請求出NJ的長; (3)小明發(fā)現(xiàn):在矩形紙片中,若一邊長為6cm,當(dāng)另一邊的長度a變化時,在矩形紙片上總能畫出最大的正三角形,但位置會有所不同.請根據(jù)小明的發(fā)現(xiàn),畫出不同情形的示意圖(作圖工具不限,能說明問題即可),并直接寫出對應(yīng)的a的取值范圍.【答案】(1)證明見解析;(2)①證明見解析;②126(3)3<a<4,a>4【解析】分析:(1)由折疊的性質(zhì)和垂直平分線的性質(zhì)得出PB=PC,PB=CB,得出PB=PC=CB即可;(2)①利用“HL”證Rt△IHM≌Rt△IJN即可得;②IJ上取一點Q,使QI=QN,由Rt△IHM≌Rt△IJN知∠HIM=∠JIN=15176。,繼而可得∠NQJ=30176。,設(shè)NJ=x,則IQ=QN=2x、QJ=x,根據(jù)IJ=IQ+QJ求出x即可得;(3)由等邊三角形的性質(zhì)、直角三角形的性質(zhì)、勾股定理進行計算,畫出圖形即可.(1)證明:∵①對折矩形紙片ABCD(ABBC),使AB與DC重合,得到折痕EF∴PB=PC∵沿折痕BG折疊紙片,使點C落在EF上的點P處∴PB=BC∴PB=PC=BC∴△PBC是正三角形:(2)證明:①如圖∵矩形AHIJ∴∠H=∠J=90176?!摺鱉NJ是等邊三角形∴MI=NI在Rt△MHI和Rt△JNI中 ∴Rt△MHI≌Rt△JNI(HL)∴HI=IJ②在線段IJ上取點Q,使IQ=NQ∵Rt△IHM≌Rt△IJN,∴∠HIM=∠JIN,∵∠HIJ=90176。、∠MIN=60176。,∴∠HIM=∠JIN=15176。,由QI=QN知∠JIN=∠QNI=15176。,∴∠NQJ=30176。,設(shè)NJ=x,則IQ=QN=2x,QJ=x,∵IJ=6cm,∴2x+x=6,∴x=126,即NJ=126(cm).(3)分三種情況:①如圖:設(shè)等邊三角形的邊長為b,則0<b≤6,則tan60176。=,∴a=,∴0<b≤=;②如圖當(dāng)DF與DC重合時,DF=DE=6,∴a=sin60176。DE==,當(dāng)DE與DA重合時,a=,∴<a<;③如圖∵△DEF是等邊三角形∴∠FDC=30176?!郉F=∴a>點睛:本題是四邊形的綜合題目,考查了折疊的性質(zhì)、等邊三角形的判定與性質(zhì)、旋轉(zhuǎn)的性質(zhì)、直角三角形的性質(zhì)、正方形的性質(zhì)、全等三角形的判定與性質(zhì)等知識;本題綜合性強,難度較大.15.如圖1所示,(1)在正三角形ABC中,M是BC邊(不含端點B、C)上任意一點,P是BC延長線上一點,N是∠ACP的平分線上一點,若∠AMN=60176。,求證:AM=MN.(2)若將(1)中“正三角形ABC”改為“正方形ABCD”,N是∠DCP的平分線上一點,若∠AMN=90176。,則AM=MN是否成立?若成立,請證明;若不成立,說明理由.(3)若將(2)中的“正方形ABCD”改為“正n邊形A1A2…An“,其它條件不變,請你猜想:當(dāng)∠An﹣2MN=_____176。時,結(jié)論An﹣2M=MN仍然成立.(不要求證明) 【答案】【解析】分析:(1)要證明AM=MN,可證AM與MN所在的三角形全等,為此,可在AB上取一點E,使AE=CM,連接ME,利用ASA即可證明△AEM≌△MCN,然后根據(jù)全等三角形的對應(yīng)邊成比例得出AM=MN.(2)同(1),要證明AM=MN,可證AM與MN所在的三角形全等,為此,可在AB上取一點E,使AE=CM,連接ME,利用ASA即可證明△AEM≌△MCN,然后根據(jù)全等三角形的對應(yīng)邊成比例得出AM=MN.詳(1)證明:在邊AB上截取AE=MC,連接ME.在正△ABC中,∠B=∠BCA=60176。,AB=BC.∴∠NMC=180176。∠AMN∠AMB=180176。∠B∠AMB=∠MAE,BE=ABAE=BCMC=BM,∴∠BEM=60176。,∴∠AEM=120176。.∵N是∠ACP的平分線上一點,∴∠ACN=60176。,∴∠MCN=120176。.在△AEM與△MCN中,∠MAE=∠NMC,AE=MC,∠AEM=∠MCN,∴△AEM≌△MCN(ASA),∴AM=MN.(2)解:結(jié)論成立;理由:在邊AB上截取AE=MC,連接ME.∵正方形ABCD中,∠B=∠BCD=90176。,AB=BC.∴∠NMC=180176?!螦MN∠AMB=180176?!螧∠AMB=∠MAB=∠MAE,BE=ABAE=BCMC=BM,∴∠BEM=45176。,∴∠AEM=135176。.∵N是∠DCP的平分線上一點,∴∠NCP=45176。,∴∠MCN=135176。.在△AEM與△MCN中,∠MAE=∠NMC,AE=MC,∠AEM=∠MCN,∴△AEM≌△MCN(ASA),∴AM=MN.(3)由(1)(2)可知當(dāng)∠An2MN等于n邊形的內(nèi)角時,結(jié)論An2M=MN仍然成立;即∠An2MN=時,結(jié)論An2M=MN仍然成立;故答案為[].點睛:本題綜合考查了正方形、等邊三角形的性質(zhì)及全等三角形的判定,同時考查了學(xué)生的歸納能力及分析、解決問題的能力.難度較大.
點擊復(fù)制文檔內(nèi)容
合同協(xié)議相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號-1