【總結】1、什么叫做相似三角形?2、你有幾種方法判定兩個三角形有相似三角形?對應邊成比例,對應角相等的三角形是相似三角形。兩個三角形相似,除了對應邊成比例、對應角相等之外,還可以得到許多有用的結論.例如,在圖24.3.9中,△ABC和△A′B′C′是兩個相似三角形,相似比為k,其中AD、A′D′分別為BC、B′C′邊上
2024-11-24 13:48
【總結】第一篇:相似三角形復習教案 相似三角形復習教案 教學目標:本課為相似三角形專題復習課,是對本章基本內(nèi)容復習基礎上的深化,通過對一個題目的演變,緊緊圍繞一線三直角這個基本模型展開,由淺入深對相似三角...
2024-10-29 06:04
【總結】相似三角形與全等三角形的綜合復習友情提示:請根據(jù)課本相關內(nèi)容,快速解決下列問題,8分鐘后交流展示你的成果?!疚曳此?,我梳理】(一)相似三角形1.定義:各角對應________,各邊對應成________的兩個三角形叫做相似三角形.2.判定(1)平行于三角
2024-11-24 14:14
【總結】第一篇:關于《相似三角形的性質(zhì)》教學反思 [教學反思專用稿] 關于《相似三角形的性質(zhì)(1))》教學反思 九年級數(shù)學學科姓名:周曉煥 教材分析: 本節(jié)課內(nèi)容是在學生學習了相似三角形的判定和利用...
2024-11-18 22:59
【總結】相似三角形的判定學習目標、重點、難點【學習目標】1.掌握兩個三角形相似的判定條件(三個角對應相等,三條邊的比對應相等,則兩個三角形相似)——相似三角形的定義,和三角形相似的預備定理(平行于三角形一邊的直線和其它兩邊相交,所構成的三角形與原三角形相似).2.掌握“兩組對應邊的比相等且它們的夾角相等的兩個三角形相似”的判定方法;掌握“兩角對應相等,兩個三角形相似”
2025-08-05 10:51
【總結】《相似三角形的應用》教案 課題 相似三角形的應用 總課時 2 本節(jié)課時 1 課型 新授課 ...
2025-04-03 05:08
【總結】第一篇:相似三角形性質(zhì)(一)教學反思 類似三角形的本質(zhì)是第四版第四版第四版第四章第四章內(nèi)容的第四章。本課的重點是探索類似三角形的本質(zhì),并解決類似三角形屬性的簡單實際問題。事實上,在理解類似三角形的基...
2024-10-29 06:16
【總結】課題:相似三角形的復習教學目標:1.通過操作總結歸納出相似三角形中常用的基本圖形;2.學會從復雜圖形中找出基本圖形,從而解決有關問題.重點:歸納相似三角形中常用的基本圖形.難點:從復雜圖形中找出基本圖形.教學過程:一、操作:已知銳角△ABC中,AB&
2024-11-24 17:15
【總結】相似三角形的性質(zhì)全等三角形有哪些性質(zhì)?類比全等三角形的性質(zhì),相似三角形還有哪些性質(zhì)呢?根據(jù)定義相似三角形具有什么性質(zhì)?掌握相似三角形的有關性質(zhì),并能利用這些性質(zhì)解決一些簡單的問題.探究活動已知△ABC∽△A'B'C',AD與A'D'分別是對應邊
2024-12-28 02:09
【總結】相似三角形的性質(zhì).(重點).(難點),面積的比等于相似比的平方.(重點)、面積比在實際中的應用.(難點)學習目標ACBA1C1B1問題:△ABC與△A1B1C1相似嗎?導入新課ACBA1C1B1相似三角形對應角相等、
2024-12-29 02:17
【總結】相似三角形的性質(zhì)和判定(一)余干縣黃金埠中學劉子玲驀然回首?1、什么叫做全等三角形?能夠完全重合的兩個三角形叫做全等三角形。(如右圖△ABC≌△DEF)2、全等三角形的對應邊、對應角之間各有什么關系?對應邊相等、對應角相等。ABCDEFSAS,ASA,AAS,SS
2025-08-23 09:34
【總結】浙教版九年級《數(shù)學》上冊九年級數(shù)學備課組.練一練:已知兩個三角形相似,請完成下列表格:相似比2k……周長比……面積比10000……復習提問我們已經(jīng)學習相似三角形的性質(zhì)有哪些?1、相似三角形對應角相等。2、相似三角形對應邊成比例。
2024-11-09 12:31
【總結】相似三角形的性質(zhì)說課內(nèi)容教材分析一教學目標二教學方法三學法指導四教學過程的設計五?1、教材的地位與作用“相似三角形的性質(zhì)”是在學完相似三角形的定義的基礎上,進一步研究相似三角形的特性,同時也是繼全等三角形后對圖形進一步研究和拓展,它是全等三角形性質(zhì)的拓展,也是研究相似多邊形的基礎。
2025-03-12 14:47
【總結】某施工隊在道路拓寬施工時遇到這樣一個問題,馬路旁邊原有一個面積為100平方米,周長為80米的三角形綠化地,由于馬路拓寬綠地被削去了一個角,變成了一個梯形,原綠化地一邊AB的長由原來的30米縮短成18米.現(xiàn)在的問題是:被削去的部分面積有多大?它的周長是多少?你能夠?qū)⑸厦嫔钪械膯栴}轉(zhuǎn)化為數(shù)學問題嗎?DE30m
2024-11-10 21:33
【總結】§相似三角形的性質(zhì)學習目標1,在理解相似三角形基本性質(zhì)的基礎上,掌握相似三角形對應中線、對應高線、對應角平分線的比等于相似比,周長的比等于相似比,面積的比等于相似比的平方。2,通過實踐體會相似三角形的性質(zhì),會用性質(zhì)解決相關的問題。課前熱身1,相似