freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

幾何畫板在小學(xué)數(shù)學(xué)教學(xué)中的應(yīng)用優(yōu)秀范文五篇(編輯修改稿)

2024-11-09 17:03 本頁面
 

【文章內(nèi)容簡介】 例說明。如圖,已知二次函數(shù)y=ax2+bx+3的圖像經(jīng)過A(1,0)、B(3,0)、N(2,3)三點(diǎn),且與y軸交于點(diǎn)C。(1)求頂點(diǎn)M及點(diǎn)C的坐標(biāo);(2)若直線y=kx+d經(jīng)過C、M兩點(diǎn),且與x軸交于點(diǎn)D,試證明四邊行CDAN是平行四邊行;(3)點(diǎn)P是這個(gè)二次函數(shù)的對(duì)稱軸上一動(dòng)點(diǎn),請(qǐng)?zhí)剿鳎菏欠翊嬖谶@樣的點(diǎn)P,使以點(diǎn)P為圓心的圓經(jīng)過A、B兩點(diǎn),并且與直線CD相切,如果存在,請(qǐng)求出點(diǎn)P的坐標(biāo);如果不存在,請(qǐng)說明理由。分析:這道目,第(1)、(2)問都比較容易解決,第(3)問就是關(guān)于動(dòng)點(diǎn)的,比較抽象,然而運(yùn)用幾何畫板后,情況就變得很明顯了,給解題幫助很大。解:(1)因?yàn)槎魏瘮?shù)經(jīng)過點(diǎn)A、B、N,且三個(gè)點(diǎn)的坐標(biāo)都已知,可解得二次函數(shù)的解析式為y=x2+2x+3,可解得: C(0,3);M(1,4)。(2)在幾何畫板中連接CN、AN、AD,如圖: 由于已經(jīng)知道C、M兩點(diǎn)的坐標(biāo),直線y=kx+d又經(jīng)過C、M兩個(gè)點(diǎn),可得直線的解析式為y=x+3。D點(diǎn)是直線與X軸的交點(diǎn),可得D點(diǎn)的坐標(biāo)為(3,0),又因?yàn)锳點(diǎn)的坐標(biāo)為(1,0),所以AD=2。再看C、N兩點(diǎn),其坐標(biāo)都已知,且縱坐標(biāo)都為3,可得CN與X軸平行,那么自然就與AD平行了。再由C、N兩點(diǎn)的坐標(biāo)可得CN=2,因此AD=CN;在四邊形CDAN中兩邊AD、CN平行且相等,所以它是一個(gè)平行四邊形。(3)這個(gè)問題比較抽象,因?yàn)辄c(diǎn)P是動(dòng)點(diǎn)。我們現(xiàn)在借助幾何畫板對(duì)這種情況進(jìn)行分析。因?yàn)锳、B兩點(diǎn)是二次函數(shù)與X軸的交點(diǎn),自然關(guān)于函數(shù)的對(duì)稱軸對(duì)稱,兩點(diǎn)到對(duì)稱軸上任意一點(diǎn)的距離相等。故以對(duì)稱軸上的點(diǎn)為圓心作圓,經(jīng)過其中一個(gè)交點(diǎn),必定經(jīng)過另外一個(gè)點(diǎn),因此考慮一個(gè)點(diǎn)就行了。先在二次函數(shù)的對(duì)稱軸上任找一點(diǎn)P,連接AP,再以P為圓心,AP為半徑作圓,不斷的拖動(dòng)P點(diǎn),看看這個(gè)圓是否能與直線CD相切。如下圖:從上圖中可以看出:圖a中P點(diǎn)比較靠近X軸,所作圓與直線CD沒有交點(diǎn);圖b中,P點(diǎn)離X軸較遠(yuǎn),所作圓與直線CD相交,有兩個(gè)交點(diǎn)。試想:圖a中的P點(diǎn)向上移動(dòng)的到達(dá)圖b所在的位置過程中,中間肯定有一個(gè)點(diǎn)讓圓與直線CD相切,如圖c所示。那么應(yīng)該怎樣求P點(diǎn)的坐標(biāo)呢!看右圖:過P點(diǎn)作直線CD的垂線,垂足為K,要想使圓P與直線CD相切,實(shí)際上PK這時(shí)是圓P的半徑。即PK=PA時(shí),圓P與直線CD相切。在△DEM中三個(gè)點(diǎn)的坐標(biāo)都知道,可得DE=EM,因此△DEM是一個(gè)等腰直角三角形。同樣△PMK也是等腰直角三角形,有:2KP2=MP2 又因?yàn)椋篈P2=AE2+PE2,MP=MEPE,KP=AP;其中:AE=2;PE=1;ME=4??山獾茫篜E=264,P點(diǎn)的坐標(biāo)為(1,264)。解到這里,此題看似已完,但如果你夠細(xì)心,把P點(diǎn)再上下拖動(dòng),會(huì)發(fā)現(xiàn)在X軸的下方還在一個(gè)點(diǎn)能使點(diǎn)圓P與直線CD相切,如下圖:相同的方法,可解得:PE=(26+4)。由于P點(diǎn)在X軸的下方,所以P點(diǎn)的坐標(biāo)為(1,(26+4))。因此滿足這樣的點(diǎn)P在對(duì)稱軸上有兩個(gè)點(diǎn): 即P1(1,264);P2(1,(26+4))。從本題中不難看出,運(yùn)用幾何畫板給我們?cè)诮鉀Q動(dòng)點(diǎn)問題中提供了很大的幫助,在紙上或黑板上不容易發(fā)現(xiàn)的問題,在幾何畫板上只要輕輕拖動(dòng)鼠標(biāo)就很容易發(fā)現(xiàn),從而有效的避免了漏解情況的發(fā)生。幾何畫板在數(shù)學(xué)教學(xué)中應(yīng)用遠(yuǎn)遠(yuǎn)不止這些,如畫直觀圖,在黑板上畫是很費(fèi)時(shí)的,但在幾何畫板中可用鼠標(biāo)一點(diǎn)完成。因此,只要我們熟練掌握幾何畫板功能,多實(shí)踐,不斷與數(shù)學(xué)教學(xué)相結(jié)合,相信就能使它在數(shù)學(xué)教學(xué)中發(fā)揮的作用。【參考文獻(xiàn)】[1] 田延斌.《《幾何畫板》教學(xué)實(shí)例》.[2] 張淑俊.《《幾何畫板》在數(shù)學(xué)教學(xué)中的妙用》.第三篇:幾何畫板在初中數(shù)學(xué)教學(xué)中應(yīng)用幾何畫板在初中數(shù)學(xué)教學(xué)中應(yīng)用數(shù)學(xué)是一門嚴(yán)謹(jǐn)?shù)目茖W(xué),它具有嚴(yán)密的邏輯性和演繹性.“現(xiàn)代信息技術(shù)的廣泛運(yùn)用正在對(duì)數(shù)學(xué)課程內(nèi)容、數(shù)學(xué)教學(xué)、數(shù)學(xué)學(xué)習(xí)等產(chǎn)生深刻的影響.教學(xué)中要重視利用信息技術(shù)來呈現(xiàn)、以往課堂教學(xué)難以呈現(xiàn)的內(nèi)容.”在傳統(tǒng)的教學(xué)中由于缺少某些必要的教具和動(dòng)畫演示,許多概念和性質(zhì)對(duì)應(yīng)的圖形無法準(zhǔn)確生動(dòng)表示,學(xué)生只能在老師的解釋和粗略的草圖下進(jìn)行理解,背離了數(shù)學(xué)來源于生活,又高于生活的本質(zhì),致使學(xué)生普遍認(rèn)為數(shù)學(xué)抽象難學(xué).另外,一些繁難的計(jì)算也浪費(fèi)了大量時(shí)間,使課堂效率降低.為改變這些弊病,老師的教學(xué)方式和手段就必須改變.在多媒體基本普及的今天,信息技術(shù)的力量使上述問題的解決成為可能的和可行的.“有條件的地區(qū),教學(xué)中要盡可能地使用函數(shù)計(jì)算器、計(jì)算機(jī)以及有關(guān)軟件,這種現(xiàn)代教育手段和技術(shù)將有效地改變教學(xué)方式,提高教學(xué)的效益?!保ㄕn程標(biāo)準(zhǔn))在眾多的信息技術(shù)中,《幾何畫板》軟件不僅具有強(qiáng)大的作圖、計(jì)算及動(dòng)畫功能,而且具有即時(shí)性與交互性,在課堂教學(xué)中適當(dāng)使用《幾何畫板》軟件輔助教學(xué)可提高教與學(xué)的質(zhì)量.經(jīng)過學(xué)習(xí)和不斷實(shí)踐,嘗試使用幾何畫板教學(xué),收到了良好的教學(xué)效果。下面結(jié)合實(shí)際談?wù)劺脦缀萎嫲遘浖O(shè)計(jì)初中數(shù)學(xué)課的幾點(diǎn)做法。,使學(xué)生自主探究數(shù)學(xué)是從問題開始的。每一節(jié)數(shù)學(xué)課都離不開問題,那么是教師一道一道的講解呢?還是由學(xué)生自己探究呢?我想這應(yīng)該不是當(dāng)代教師的問題。關(guān)鍵是問題情境的創(chuàng)設(shè)對(duì)學(xué)生有沒有吸引力。例如:在講解函數(shù)的最值問題時(shí),用畫板提出了這樣的問題:在圓的內(nèi)接矩形中,邊長比是多少的矩形面積最大?(請(qǐng)用畫板軟件探索結(jié)果)學(xué)生們很快就投入到操作和實(shí)踐中,通過移動(dòng)圓上的動(dòng)點(diǎn),比較邊長的關(guān)系,不久便得出了結(jié)論:圓的內(nèi)接正方形即邊長比為1的矩形面積最大。教師接著又問,究竟是為什么圓的內(nèi)接正方形是圓的內(nèi)接矩形中面積最大的呢?學(xué)生們你一言,我一語互相討論起來,進(jìn)而在教師的引導(dǎo)下,利用二次函數(shù)求最值的方法,得出了證明?? 學(xué)生在課上,經(jīng)歷了探索——猜想——證明,這三個(gè)數(shù)學(xué)學(xué)習(xí)的必須階段,使得知識(shí)成為條件化的知識(shí),加深了印象并提高了學(xué)習(xí)數(shù)學(xué)的興趣。,發(fā)展學(xué)生空間想象能力眾所周知,數(shù)形結(jié)合是一種很重要的數(shù)學(xué)思想,數(shù)學(xué)家華羅庚說過:“數(shù)缺形時(shí)少直覺,形缺數(shù)時(shí)難入微”?!皵?shù)形結(jié)合”是學(xué)習(xí)數(shù)學(xué)的重要方法,用圖形解釋抽象的數(shù)學(xué)現(xiàn)象形象、直觀。因此多數(shù)教師都非常重視數(shù)形結(jié)合的教學(xué),上課時(shí)盡量地畫好圖形,力求使圖形展現(xiàn)出其變化的趨勢。但是無論怎么畫,怎么用一個(gè)又一個(gè)的幻燈片給學(xué)生展示,也只能給出一個(gè)“死圖”,而利用畫板平臺(tái)教學(xué),則可以繪制一幅幅有形有色會(huì)運(yùn)動(dòng)的“活”圖,真正實(shí)現(xiàn)數(shù)形結(jié)合,增大課堂容量,達(dá)到良好的教學(xué)效果。、可視的教學(xué)情景,能使抽象問題形象化、直觀化,激發(fā)學(xué)生的學(xué)習(xí)熱情和積極性函數(shù)是數(shù)學(xué)的重要內(nèi)容,二次函數(shù)是初中教學(xué)中的一個(gè)難點(diǎn)。尤其是圖像和各系數(shù)的關(guān)系這一內(nèi)容,學(xué)生理解起來有很大困難??梢岳卯嫲瀹嫵龆魏瘮?shù)的圖像,再適時(shí)地改變各系數(shù)的值,讓學(xué)生觀察圖象的變化,從而可以很輕松地掌握這一規(guī)律。學(xué)生在初中首次接觸到函數(shù)及其圖象時(shí)難以真正理解函數(shù)定義中兩個(gè)變量的對(duì)應(yīng)關(guān)系及一次函數(shù)的圖象是條直線,而二次函數(shù)的圖象是拋物線.這時(shí)可打開幾何畫板用畫點(diǎn)工具先在x軸上任意作一個(gè)點(diǎn)a,以點(diǎn)a的橫坐標(biāo)x為自變量,計(jì)算出對(duì)應(yīng)的函數(shù)值y,然后以x,y作為點(diǎn)的橫、縱坐標(biāo)繪制點(diǎn)b(x,y),然后 利用動(dòng)畫演示追蹤b點(diǎn)的軌跡,就可得到一次函數(shù)和二次函數(shù)的圖象,同時(shí)可將b點(diǎn)的坐標(biāo)繪制成表格.這時(shí)結(jié)合動(dòng)畫和表格引導(dǎo)學(xué)生觀察表格中數(shù)據(jù)的變化講解函數(shù)自變量和應(yīng)變量的關(guān)系時(shí),學(xué)生就能更容易理解函數(shù)的定義了,將抽
點(diǎn)擊復(fù)制文檔內(nèi)容
環(huán)評(píng)公示相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖片鄂ICP備17016276號(hào)-1