freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

高中數(shù)學(xué)知識點總結(jié)范文合集(編輯修改稿)

2024-11-09 12:32 本頁面
 

【文章內(nèi)容簡介】 R,值域是.,函數(shù)y=arcctgx的定義域是 R,值域是(0, π).當(dāng)以上幾個方面有兩個或兩個以上同時出現(xiàn)時,先分別求出滿足每一個條件的自變量的范圍,再取他們的交集,就得到函數(shù)的定義域。?義域是_____________。復(fù)合函數(shù)定義域的求法:已知的定義域為,求的定義域,可由解出x的范圍,即為的定義域。例 若函數(shù)的定義域為,則的定義域為。分析:由函數(shù)的定義域為可知:;所以中有。解:依題意知:解之,得 ∴ 的定義域為1函數(shù)值域的求法直接觀察法對于一些比較簡單的函數(shù),其值域可通過觀察得到。例 求函數(shù)y=的值域配方法配方法是求二次函數(shù)值域最基本的方法之一。例、求函數(shù)y=2x+5,x[1,2]的值域。判別式法對二次函數(shù)或者分式函數(shù)(分子或分母中有一個是二次)都可通用,但這類題型有時也可以用其他方法進(jìn)行化簡,不必拘泥在判別式上面 下面,我把這一類型的詳細(xì)寫出來,希望大家能夠看懂反函數(shù)法直接求函數(shù)的值域困難時,可以通過求其原函數(shù)的定義域來確定原函數(shù)的值域。例 求函數(shù)y=值域。函數(shù)有界性法直接求函數(shù)的值域困難時,可以利用已學(xué)過函數(shù)的有界性,來確定函數(shù)的值域。我們所說的單調(diào)性,最常用的就是三角函數(shù)的單調(diào)性。例 求函數(shù)y=,的值域。函數(shù)單調(diào)性法通常和導(dǎo)數(shù)結(jié)合,是最近高考考的較多的一個內(nèi)容 例求函數(shù)y=(2≤x≤10)的值域換元法通過簡單的換元把一個函數(shù)變?yōu)楹唵魏瘮?shù),其題型特征是函數(shù)解析式含有根式或三角函數(shù)公式模型。換元法是數(shù)學(xué)方法中幾種最主要方法之一,在求函數(shù)的值域中同樣發(fā)揮作用。例 求函數(shù)y=x+的值域。8 數(shù)形結(jié)合法 其題型是函數(shù)解析式具有明顯的某種幾何意義,如兩點的距離公式直線斜率等等,這類題目若運(yùn)用數(shù)形結(jié)合法,往往會更加簡單,一目了然,賞心悅目。例:已知點P()在圓x2+y2=1上,例求函數(shù)y=+的值域。解:原函數(shù)可化簡得:y=∣x2∣+∣x+8∣ 上式可以看成數(shù)軸上點P(x)到定點A(2),B(8)間的距離之和。由上圖可知:當(dāng)點P在線段AB上時,y=∣x2∣+∣x+8∣=∣AB∣=10當(dāng)點P在線段AB的延長線或反向延長線上時,y=∣x2∣+∣x+8∣>∣AB∣=10 故所求函數(shù)的值域為:[10,+∞)例求函數(shù)y=+ 的值域解:原函數(shù)可變形為:y=+上式可看成x軸上的點P(x,0)到兩定點A(3,2),B(2,1)的距離之和,由圖可知當(dāng)點P為線段與x軸的交點時,y=∣AB∣==,故所求函數(shù)的值域為[,+∞)。例求函數(shù)y=的值域 解:將函數(shù)變形為:y=上式可看成定點A(3,2)到點P(x,0)的距離與定點B(2,1)到點P(x,0)的距離之差。即:y=∣AP∣∣BP∣ 由圖可知:(1)當(dāng)點P在x軸上且不是直線AB與x軸的交點時,如點P1,則構(gòu)成△ABP1,根據(jù)三角形兩邊之差小于第三邊,有 ∣∣AP1∣∣BP1∣∣<∣AB∣== 即:<y<(2)當(dāng)點P恰好為直線AB與x軸的交點時,有 ∣∣AP∣∣BP∣∣=∣AB∣=。綜上所述,可知函數(shù)的值域為:(,)。注:求兩距離之和時,要將函數(shù)式變形,使A,B兩點在x軸的兩側(cè),而求兩距離之差時,則要使兩點A,B在x軸的同側(cè)。不等式法利用基本不等式a+b≥2,a+b+c≥3(a,b,c∈),求函數(shù)的最值,其題型特征解析式是和式時要求積為定值,解析式是積時要求和為定值,不過有時須要用到拆項、添項和兩邊平方等技巧。例:倒數(shù)法有時,直接看不出函數(shù)的值域時,把它倒過來之后,你會發(fā)現(xiàn)另一番境況 例 求函數(shù)y=的值域多種方法綜合運(yùn)用總之,在具體求某個函數(shù)的值域時,首先要仔細(xì)、認(rèn)真觀察其題型特征,然后再選擇恰當(dāng)?shù)姆椒?,一般?yōu)先考慮直接法,函數(shù)單調(diào)性法和基本不等式法,然后才考慮用其他各種特殊方法。,注明函數(shù)的定義域了嗎? 切記:做題,特別是做大題時,一定要注意附加條件,如定義域、單位等東西要記得協(xié)商,不要犯我當(dāng)年的錯誤,與到手的滿分失之交臂?(一一對應(yīng)函數(shù))求反函數(shù)的步驟掌握了嗎?(①反解x;②互換x、y;③注明定義域)在更多時候,反函數(shù)的求法只是在選擇題中出現(xiàn),這就為我們這些喜歡偷懶的人提供了大方便。請看這個例題:()函數(shù)的反函數(shù)是(B)A.y=x2-2x+2(x當(dāng)然,心情好的同學(xué),可以自己慢慢的計算,我想,一番心血之后,如果不出現(xiàn)計算問題的話,答案還是可以做出來的??上?,這個不合我胃口,因為我一向懶散慣了,不習(xí)慣計算。下面請看一下我的思路:原函數(shù)定義域為 x〉=1,那反函數(shù)值域也為y=,。原函數(shù)至于為y=1,則反函數(shù)定義域為x=1, ,好像沒有動筆(除非你拿來寫*書)。思路能不能明白呢?? 反函數(shù)性質(zhì):反函數(shù)的定義域是原函數(shù)的值域(可擴(kuò)展為反函數(shù)中的x對應(yīng)原函數(shù)中的y)反函數(shù)的值域是原函數(shù)的定義域(可擴(kuò)展為反函數(shù)中的y對應(yīng)原函數(shù)中的x)反函數(shù)的圖像和原函數(shù)關(guān)于直線=x對稱(難怪點(x,y)和點(y,x)關(guān)于直線y=x對稱①互為反函數(shù)的圖象關(guān)于直線y=x對稱; ②保存了原來函數(shù)的單調(diào)性、奇函數(shù)性;由反函數(shù)的性質(zhì),可以快速的解出很多比較麻煩的題目,如()已知函數(shù), 對于這一類題目,其實方法特別簡單,呵呵。已知反函數(shù)的y,不就是原函數(shù)的x嗎?那代進(jìn)去阿,答案是不是已經(jīng)出來了呢?(也可能是告訴你反函數(shù)的x值,那方法也一樣,呵呵。自己想想,?(取值、作差、判正負(fù))判斷函數(shù)單調(diào)性的方法有三種:(1)定義法:根據(jù)定義,設(shè)任意得x1,x2,找出f(x1),f(x2)之間的大小關(guān)系可以變形為求的正負(fù)號或者與1的關(guān)系(2)參照圖象:①若函數(shù)f(x)的圖象關(guān)于點(a,b)對稱,函數(shù)f(x)在關(guān)于點(a,0)的對稱區(qū)間具有相同的單調(diào)性;(特例:奇函數(shù))②若函數(shù)f(x)的圖象關(guān)于直線x=a對稱,則函數(shù)f(x)在關(guān)于點(a,0)的對稱區(qū)間里具有相反的單調(diào)性。(特例:偶函數(shù))(3)利用單調(diào)函數(shù)的性質(zhì):①函數(shù)f(x)與f(x)+c(c是常數(shù))是同向變化的②函數(shù)f(x)與cf(x)(c是常數(shù)),當(dāng)c>0時,它們是同向變化的;當(dāng)c<0時,它們是反向變化的。③如果函數(shù)f1(x),f2(x)同向變化,則函數(shù)f1(x)+f2(x)和它們同向變化;(函數(shù)相加)④如果正值函數(shù)f1(x),f2(x)同向變化,則函數(shù)f1(x)f2(x)和它們同向變化;如果負(fù)值函數(shù)f1(2)與f2(x)同向變化,則函數(shù)f1(x)f2(x)和它們反向變化;(函數(shù)相乘)⑤函數(shù)f(x)與在f(x)的同號區(qū)間里反向變化。⑥若函數(shù)u=φ(x),x[α,β]與函數(shù)y=F(u),u∈[φ(α),φ(β)]或u∈[φ(β),φ(α)]同向變化,則在[α,β]上復(fù)合函數(shù)y=F[φ(x)]是遞增的;若函數(shù)u=φ(x),x[α,β]與函數(shù)y=F(u),u∈[φ(α),φ(β)]或u∈[φ(β),φ(α)]反向變化,則在[α,β]上復(fù)合函數(shù)y=F[
點擊復(fù)制文檔內(nèi)容
數(shù)學(xué)相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖片鄂ICP備17016276號-1