freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

高中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)范文合集(編輯修改稿)

2024-11-09 12:32 本頁(yè)面
 

【文章內(nèi)容簡(jiǎn)介】 R,值域是.,函數(shù)y=arcctgx的定義域是 R,值域是(0, π).當(dāng)以上幾個(gè)方面有兩個(gè)或兩個(gè)以上同時(shí)出現(xiàn)時(shí),先分別求出滿足每一個(gè)條件的自變量的范圍,再取他們的交集,就得到函數(shù)的定義域。?義域是_____________。復(fù)合函數(shù)定義域的求法:已知的定義域?yàn)?,求的定義域,可由解出x的范圍,即為的定義域。例 若函數(shù)的定義域?yàn)椋瑒t的定義域?yàn)?。分析:由函?shù)的定義域?yàn)榭芍?;所以中有。解:依題意知:解之,得 ∴ 的定義域?yàn)?函數(shù)值域的求法直接觀察法對(duì)于一些比較簡(jiǎn)單的函數(shù),其值域可通過(guò)觀察得到。例 求函數(shù)y=的值域配方法配方法是求二次函數(shù)值域最基本的方法之一。例、求函數(shù)y=2x+5,x[1,2]的值域。判別式法對(duì)二次函數(shù)或者分式函數(shù)(分子或分母中有一個(gè)是二次)都可通用,但這類(lèi)題型有時(shí)也可以用其他方法進(jìn)行化簡(jiǎn),不必拘泥在判別式上面 下面,我把這一類(lèi)型的詳細(xì)寫(xiě)出來(lái),希望大家能夠看懂反函數(shù)法直接求函數(shù)的值域困難時(shí),可以通過(guò)求其原函數(shù)的定義域來(lái)確定原函數(shù)的值域。例 求函數(shù)y=值域。函數(shù)有界性法直接求函數(shù)的值域困難時(shí),可以利用已學(xué)過(guò)函數(shù)的有界性,來(lái)確定函數(shù)的值域。我們所說(shuō)的單調(diào)性,最常用的就是三角函數(shù)的單調(diào)性。例 求函數(shù)y=,的值域。函數(shù)單調(diào)性法通常和導(dǎo)數(shù)結(jié)合,是最近高考考的較多的一個(gè)內(nèi)容 例求函數(shù)y=(2≤x≤10)的值域換元法通過(guò)簡(jiǎn)單的換元把一個(gè)函數(shù)變?yōu)楹?jiǎn)單函數(shù),其題型特征是函數(shù)解析式含有根式或三角函數(shù)公式模型。換元法是數(shù)學(xué)方法中幾種最主要方法之一,在求函數(shù)的值域中同樣發(fā)揮作用。例 求函數(shù)y=x+的值域。8 數(shù)形結(jié)合法 其題型是函數(shù)解析式具有明顯的某種幾何意義,如兩點(diǎn)的距離公式直線斜率等等,這類(lèi)題目若運(yùn)用數(shù)形結(jié)合法,往往會(huì)更加簡(jiǎn)單,一目了然,賞心悅目。例:已知點(diǎn)P()在圓x2+y2=1上,例求函數(shù)y=+的值域。解:原函數(shù)可化簡(jiǎn)得:y=∣x2∣+∣x+8∣ 上式可以看成數(shù)軸上點(diǎn)P(x)到定點(diǎn)A(2),B(8)間的距離之和。由上圖可知:當(dāng)點(diǎn)P在線段AB上時(shí),y=∣x2∣+∣x+8∣=∣AB∣=10當(dāng)點(diǎn)P在線段AB的延長(zhǎng)線或反向延長(zhǎng)線上時(shí),y=∣x2∣+∣x+8∣>∣AB∣=10 故所求函數(shù)的值域?yàn)椋篬10,+∞)例求函數(shù)y=+ 的值域解:原函數(shù)可變形為:y=+上式可看成x軸上的點(diǎn)P(x,0)到兩定點(diǎn)A(3,2),B(2,1)的距離之和,由圖可知當(dāng)點(diǎn)P為線段與x軸的交點(diǎn)時(shí),y=∣AB∣==,故所求函數(shù)的值域?yàn)閇,+∞)。例求函數(shù)y=的值域 解:將函數(shù)變形為:y=上式可看成定點(diǎn)A(3,2)到點(diǎn)P(x,0)的距離與定點(diǎn)B(2,1)到點(diǎn)P(x,0)的距離之差。即:y=∣AP∣∣BP∣ 由圖可知:(1)當(dāng)點(diǎn)P在x軸上且不是直線AB與x軸的交點(diǎn)時(shí),如點(diǎn)P1,則構(gòu)成△ABP1,根據(jù)三角形兩邊之差小于第三邊,有 ∣∣AP1∣∣BP1∣∣<∣AB∣== 即:<y<(2)當(dāng)點(diǎn)P恰好為直線AB與x軸的交點(diǎn)時(shí),有 ∣∣AP∣∣BP∣∣=∣AB∣=。綜上所述,可知函數(shù)的值域?yàn)椋海ǎ?。注:求兩距離之和時(shí),要將函數(shù)式變形,使A,B兩點(diǎn)在x軸的兩側(cè),而求兩距離之差時(shí),則要使兩點(diǎn)A,B在x軸的同側(cè)。不等式法利用基本不等式a+b≥2,a+b+c≥3(a,b,c∈),求函數(shù)的最值,其題型特征解析式是和式時(shí)要求積為定值,解析式是積時(shí)要求和為定值,不過(guò)有時(shí)須要用到拆項(xiàng)、添項(xiàng)和兩邊平方等技巧。例:倒數(shù)法有時(shí),直接看不出函數(shù)的值域時(shí),把它倒過(guò)來(lái)之后,你會(huì)發(fā)現(xiàn)另一番境況 例 求函數(shù)y=的值域多種方法綜合運(yùn)用總之,在具體求某個(gè)函數(shù)的值域時(shí),首先要仔細(xì)、認(rèn)真觀察其題型特征,然后再選擇恰當(dāng)?shù)姆椒ǎ话銉?yōu)先考慮直接法,函數(shù)單調(diào)性法和基本不等式法,然后才考慮用其他各種特殊方法。,注明函數(shù)的定義域了嗎? 切記:做題,特別是做大題時(shí),一定要注意附加條件,如定義域、單位等東西要記得協(xié)商,不要犯我當(dāng)年的錯(cuò)誤,與到手的滿分失之交臂?(一一對(duì)應(yīng)函數(shù))求反函數(shù)的步驟掌握了嗎?(①反解x;②互換x、y;③注明定義域)在更多時(shí)候,反函數(shù)的求法只是在選擇題中出現(xiàn),這就為我們這些喜歡偷懶的人提供了大方便。請(qǐng)看這個(gè)例題:()函數(shù)的反函數(shù)是(B)A.y=x2-2x+2(x當(dāng)然,心情好的同學(xué),可以自己慢慢的計(jì)算,我想,一番心血之后,如果不出現(xiàn)計(jì)算問(wèn)題的話,答案還是可以做出來(lái)的??上?,這個(gè)不合我胃口,因?yàn)槲乙幌驊猩T了,不習(xí)慣計(jì)算。下面請(qǐng)看一下我的思路:原函數(shù)定義域?yàn)?x〉=1,那反函數(shù)值域也為y=,。原函數(shù)至于為y=1,則反函數(shù)定義域?yàn)閤=1, ,好像沒(méi)有動(dòng)筆(除非你拿來(lái)寫(xiě)*書(shū))。思路能不能明白呢?? 反函數(shù)性質(zhì):反函數(shù)的定義域是原函數(shù)的值域(可擴(kuò)展為反函數(shù)中的x對(duì)應(yīng)原函數(shù)中的y)反函數(shù)的值域是原函數(shù)的定義域(可擴(kuò)展為反函數(shù)中的y對(duì)應(yīng)原函數(shù)中的x)反函數(shù)的圖像和原函數(shù)關(guān)于直線=x對(duì)稱(chēng)(難怪點(diǎn)(x,y)和點(diǎn)(y,x)關(guān)于直線y=x對(duì)稱(chēng)①互為反函數(shù)的圖象關(guān)于直線y=x對(duì)稱(chēng); ②保存了原來(lái)函數(shù)的單調(diào)性、奇函數(shù)性;由反函數(shù)的性質(zhì),可以快速的解出很多比較麻煩的題目,如()已知函數(shù), 對(duì)于這一類(lèi)題目,其實(shí)方法特別簡(jiǎn)單,呵呵。已知反函數(shù)的y,不就是原函數(shù)的x嗎?那代進(jìn)去阿,答案是不是已經(jīng)出來(lái)了呢?(也可能是告訴你反函數(shù)的x值,那方法也一樣,呵呵。自己想想,?(取值、作差、判正負(fù))判斷函數(shù)單調(diào)性的方法有三種:(1)定義法:根據(jù)定義,設(shè)任意得x1,x2,找出f(x1),f(x2)之間的大小關(guān)系可以變形為求的正負(fù)號(hào)或者與1的關(guān)系(2)參照?qǐng)D象:①若函數(shù)f(x)的圖象關(guān)于點(diǎn)(a,b)對(duì)稱(chēng),函數(shù)f(x)在關(guān)于點(diǎn)(a,0)的對(duì)稱(chēng)區(qū)間具有相同的單調(diào)性;(特例:奇函數(shù))②若函數(shù)f(x)的圖象關(guān)于直線x=a對(duì)稱(chēng),則函數(shù)f(x)在關(guān)于點(diǎn)(a,0)的對(duì)稱(chēng)區(qū)間里具有相反的單調(diào)性。(特例:偶函數(shù))(3)利用單調(diào)函數(shù)的性質(zhì):①函數(shù)f(x)與f(x)+c(c是常數(shù))是同向變化的②函數(shù)f(x)與cf(x)(c是常數(shù)),當(dāng)c>0時(shí),它們是同向變化的;當(dāng)c<0時(shí),它們是反向變化的。③如果函數(shù)f1(x),f2(x)同向變化,則函數(shù)f1(x)+f2(x)和它們同向變化;(函數(shù)相加)④如果正值函數(shù)f1(x),f2(x)同向變化,則函數(shù)f1(x)f2(x)和它們同向變化;如果負(fù)值函數(shù)f1(2)與f2(x)同向變化,則函數(shù)f1(x)f2(x)和它們反向變化;(函數(shù)相乘)⑤函數(shù)f(x)與在f(x)的同號(hào)區(qū)間里反向變化。⑥若函數(shù)u=φ(x),x[α,β]與函數(shù)y=F(u),u∈[φ(α),φ(β)]或u∈[φ(β),φ(α)]同向變化,則在[α,β]上復(fù)合函數(shù)y=F[φ(x)]是遞增的;若函數(shù)u=φ(x),x[α,β]與函數(shù)y=F(u),u∈[φ(α),φ(β)]或u∈[φ(β),φ(α)]反向變化,則在[α,β]上復(fù)合函數(shù)y=F[
點(diǎn)擊復(fù)制文檔內(nèi)容
數(shù)學(xué)相關(guān)推薦
文庫(kù)吧 www.dybbs8.com
備案圖片鄂ICP備17016276號(hào)-1