【總結(jié)】北師大版九年級下冊數(shù)學(xué)20)yaxbxca????二次函數(shù)(24,)4acba?b頂點坐標(biāo)為(-2a244acba?①當(dāng)a0時,y有最小值=②當(dāng)a0時,y有最大值=244acba?二次函數(shù)的最值求法情境導(dǎo)入
2025-06-17 13:01
【總結(jié)】二次函數(shù)的圖像及性質(zhì)秦興富(云南省廣南縣篆角初級中學(xué)校郵編663312電話:15096506601)第一課時§二次函數(shù)的圖像及性質(zhì)教學(xué)目標(biāo)【知識與技能】1、能夠利用描點法作出函數(shù)y=x2的圖像.能夠根據(jù)圖像認(rèn)
2025-11-10 14:40
【總結(jié)】第二章二次函數(shù)二次函數(shù)的應(yīng)用知識點1利用二次函數(shù)求圖形面積的最值20cm,則這個直角三角形的最大面積為(B)cm2cm2cm22.用長8m的鋁合金條制成使窗戶的透光面積最大的矩形窗框(如圖),那么這個窗戶的最大透光面積是(C)A.6425m2
2025-06-18 00:33
【總結(jié)】二次函數(shù)的應(yīng)用(一)一、選擇題:1.二次函數(shù)y=ax2+bx+c的圖象如圖2-90所示,則下列判斷錯誤的是()A.a(chǎn)>0B.c<0D.y隨x的增大而減小2.關(guān)于二次函數(shù)y=x2+4x-7的最大(小)值敘述正確的是()A.當(dāng)x
2025-11-19 19:22
【總結(jié)】二次函數(shù)的應(yīng)用第二章學(xué)習(xí)的目的在于應(yīng)用,日常生活中,工農(nóng)業(yè)生產(chǎn)及商業(yè)活動中,方案的最優(yōu)化、最值問題,如盈利最大、用料最省、設(shè)計最佳等都與二次函數(shù)有關(guān)。一、根據(jù)已知函數(shù)的表達(dá)式解決實際問題:0xyhAB
2024-12-08 14:25
【總結(jié)】北師大版九年級下冊第二章《二次函數(shù)》有的放矢學(xué)習(xí)目標(biāo)?1、會用描點法畫二次函數(shù)y=x2和y=-x2的圖象;?2、根據(jù)函數(shù)y=x2和y=-x2圖象,直觀地了解它的性質(zhì).數(shù)形結(jié)合,直觀感受在二次函數(shù)y=x2中,y隨x的變化而變化的規(guī)律是什么??觀察y=x2的表達(dá)式,選擇適當(dāng)x值,并計算相應(yīng)的y值,完成下表
2025-11-08 00:02
【總結(jié)】第二章二次函數(shù)y=ax2+bx+c的圖象(一)一、學(xué)生知識狀況分析學(xué)生的知識技能基礎(chǔ):學(xué)生在前面幾節(jié)課已經(jīng)學(xué)習(xí)過并能夠獨立作出一個二次函數(shù)的圖像,掌握了二次函數(shù)y=ax2和y=ax2+c的一般性質(zhì)。學(xué)生活動經(jīng)驗基礎(chǔ):在相關(guān)知識的學(xué)習(xí)過程中,學(xué)生已經(jīng)經(jīng)歷了二次函數(shù)y=ax2和y=ax2+c的性質(zhì)的探索過程,在探究過程中體會到了
2024-12-09 08:13
【總結(jié)】y=ax2+bx+c想一想函數(shù)y=ax2+bx+c的圖象?二次函數(shù)y=3(x-1)2+2的圖象是什么形狀?它與我們已經(jīng)作過的二次函數(shù)的圖象有什么關(guān)系??在同一坐標(biāo)系中作出二次函數(shù)y=3x2和y=3(x-1)2的圖象。比較二次函數(shù)y=3x2和y=3(x-1)2的圖象。?⑴完成下表,并比較3x2和3(x-
2025-11-09 21:18
【總結(jié)】二次函數(shù)的應(yīng)用(1)-----解析式的求法(1)已知二次函數(shù)圖象經(jīng)過點(-1,-6)、(1、-2)和(2,3),求這個二次函數(shù)的解析式。(2)已知拋物線的頂點為(-1,-3),與y軸的交點為(0,-5),求此拋物線的解析式(3)已知拋物
2024-11-30 14:39
【總結(jié)】二次函數(shù)九年級(下冊)初中數(shù)學(xué)我們學(xué)習(xí)過的函數(shù)有哪幾種?你能分別寫出它們的表達(dá)形式嗎?二次函數(shù)水滴激起的波紋不斷向外擴(kuò)展,擴(kuò)大的圓的周長C、面積S分別與半徑r之間有怎樣的函數(shù)關(guān)系?這兩個函數(shù)表達(dá)式有何差異?二次函數(shù)用16米長的籬笆圍成矩形的生物園飼養(yǎng)小兔,怎樣圍可使小
2025-11-08 00:41
【總結(jié)】北師大版九年級下冊數(shù)學(xué)情境導(dǎo)入某超市有一種商品,進(jìn)價為2元,據(jù)市場調(diào)查,銷售單價是13元時,平均每天銷售量是50件,而銷售價每降低1元,平均每天就可以多售出10件.若設(shè)降價后售價為x元,每天利潤為y元,則y與x之間的函數(shù)關(guān)系是怎樣的?本節(jié)目標(biāo)T恤衫銷售過程中最大利潤等問題的過程,體會二次函數(shù)是一類最優(yōu)化問題的數(shù)學(xué)模型
2025-06-20 17:31
【總結(jié)】第四節(jié)二次函數(shù)y=ax2+bx+c的圖象(二)函數(shù)表達(dá)式開口方向增減性對稱軸頂點坐標(biāo)2axy?caxy??2??2hxay??a0,開口向上;a0,開口向下.)0(?xy直線軸)0,0()0(?xy直線軸),0(chx?直線)0,(h??khxay??
2024-11-30 08:17
【總結(jié)】拋物線y=x2y=-x2頂點坐標(biāo)對稱軸位置開口方向增減性最值(0,0)(0,0)y軸y軸在x軸的上方在x軸的下方向上向下最小值為0最大值為0二次函數(shù)y=x2與y=-x2的性質(zhì)如圖所示如圖所示2xy?2xy??
【總結(jié)】1一元二次方程-5t2+40t=0的根為:。2一元二次方程ax2+bx+c=0(a≠0)的根的判別式△=。當(dāng)△﹥0方程根的情況是:;當(dāng)△=0時,方程