【總結(jié)】一、平面向量復(fù)習(xí)⒈定義:既有大小又有方向的量叫向量.幾何表示法:用有向線段表示;字母表示法:用字母a、b等或者用有向線段的起點(diǎn)與終點(diǎn)字母表示.AB相等的向量:長度相等且方向相同的向量.ABCD⒉平面向量的加減法運(yùn)算⑴向量的加法:ab平行四邊形
2024-11-18 11:25
【總結(jié)】數(shù)量積公式巧證垂直問題對于空間兩個非零向量a,b來說,如果它們的夾角??,ab,那么我們定義它們的數(shù)量積為cos??abab.特別地,當(dāng)兩向量垂直時,0???abab.利用該結(jié)論,可以很好地解決立體幾何中線線垂直或線面垂直的問題.1.證明直線與直線垂直,可以轉(zhuǎn)化為證明這兩條直線上的非零向量的數(shù)量積為零.反之亦成立.
2024-11-20 00:26
【總結(jié)】【課堂新坐標(biāo)】(教師用書)2021-2021學(xué)年高中數(shù)學(xué)求曲線的方程課后知能檢測蘇教版選修2-1一、填空題1.已知點(diǎn)A(-5,0),B(5,0),動點(diǎn)P到A,B距離的平方和為122,則動點(diǎn)P滿足的方程是________.【解析】依題意,設(shè)動點(diǎn)P(x,y).由PA2+PB2=122,得(x+5)2
2024-12-04 21:34
【總結(jié)】§3.空間向量運(yùn)算的坐標(biāo)表示知識點(diǎn)一空間向量的坐標(biāo)運(yùn)算設(shè)a=(1,5,-1),b=(-2,3,5).(1)若(ka+b)∥(a-3b),求k;(2)若(ka+b)⊥(a-3b),求k.解(1)ka+b=(k-2,5k+3,-k+5)
2024-11-20 03:14
【總結(jié)】§3.空間向量的數(shù)量積運(yùn)算知識點(diǎn)一求兩向量的數(shù)量積如圖所示,已知正四面體O-ABC的棱長為a,求AB·OC..解由題意知|AB|=|AC|=|AO|=a,且〈AB,AO〉=120AB,CA〉=12
【總結(jié)】§3.空間向量的正交分解及其坐標(biāo)表示知識點(diǎn)一向量基底的判斷已知向量{a,b,c}是空間的一個基底,那么向量a+b,a-b,c能構(gòu)成空間的一個基底嗎?為什么?解∵a+b,a-b,c不共面,能構(gòu)成空間一個基底.假設(shè)a+b,a-b,c共面,則存在x,
2024-12-08 01:49
【總結(jié)】【課堂新坐標(biāo)】(教師用書)2021-2021學(xué)年高中數(shù)學(xué)雙曲線的幾何性質(zhì)課后知能檢測蘇教版選修2-1一、填空題1.(20212江蘇高考)雙曲線x216-y29=1的兩條漸近線的方程為________.【解析】由雙曲線方程可知a=4,b=3,所以兩條漸近線方程為y=±34
2024-12-05 09:29
【總結(jié)】【課堂新坐標(biāo)】(教師用書)2021-2021學(xué)年高中數(shù)學(xué)雙曲線的標(biāo)準(zhǔn)方程課后知能檢測蘇教版選修2-1一、填空題1.(2021·南京高二檢測)雙曲線x25-y24=1的焦點(diǎn)坐標(biāo)是________.【解析】∵c2=5+4=9,∴c=3,∴F(±3,0).【答案】(
【總結(jié)】數(shù)乘運(yùn)算(二)一、共線向量:零向量與任意向量共線.:如果表示空間向量的有向線段所在直線互相平行或重合,則這些向量叫做共線向量(或平行向量),記作//ab:對空間任意兩個向量
2024-11-18 12:14
【總結(jié)】aC'B'A'D'DABCGMC'B'A'D'DABC空間向量及其加減數(shù)乘運(yùn)算【學(xué)習(xí)目標(biāo)】,掌握空間向量的線性運(yùn)算及其性質(zhì);、減法、數(shù)乘及它們的運(yùn)算律;【自主學(xué)習(xí)】空間向量,談?wù)効臻g向量的概念、表示方法。思考:
2024-11-19 23:24
【總結(jié)】【課堂新坐標(biāo)】(教師用書)2021-2021學(xué)年高中數(shù)學(xué)平均變化率課后知能檢測蘇教版選修1-1一、填空題1.函數(shù)f(x)=x+1x在[2,3]上的平均變化率為________.【解析】f(3)-f(2)3-2=(3+13)-(2+12)3-2=56.【答案】562.一質(zhì)
2024-12-04 20:01
【總結(jié)】解及其坐標(biāo)表示lαOP例1在平面內(nèi)的一條直線,如果和這個平面的一條斜線的射影垂直,那么它也和這條斜線垂直。已知:如圖,PO,PA分別是平面α的垂線,斜線,AO是PA在平面α內(nèi)的射影,.:,,PAlOAll???求證且?AlαOP.,,OAPOal
【總結(jié)】空間向量及其運(yùn)算【使用說明及學(xué)法指導(dǎo)】1.先自學(xué)課本,理解概念,完成導(dǎo)學(xué)提綱;2.小組合作,動手實(shí)踐?!緦W(xué)習(xí)目標(biāo)】1.理解空間向量的概念,掌握其表示方法;2.會用圖形說明空間向量加法、減法、數(shù)乘向量及它們的運(yùn)算律;3.能用空間向量的運(yùn)算意義及運(yùn)算律解決簡單的立體幾何中的問題.【重點(diǎn)】能用空間向量的運(yùn)算意義及運(yùn)算律解決
2024-11-18 16:52
【總結(jié)】直線的方向向量與平面的法向量一、學(xué)習(xí)目標(biāo)1.理解直線的方向向量和平面的法向量;2.會用待定系數(shù)法求平面的法向量。教學(xué)重點(diǎn):直線的方向向量和平面的法向量教學(xué)難點(diǎn):求平面的法向量二、課前自學(xué)平面坐標(biāo)系中用直線的傾斜角、斜率來刻畫直線平行與垂直的位置關(guān)系。如何用向量來描述空間的兩條直線、直線
2024-11-20 00:29
【總結(jié)】重慶市萬州分水中學(xué)高中數(shù)學(xué)選修2-1《空間向量的數(shù)量積》教案備課時間教學(xué)課題教時計劃1教學(xué)課時1教學(xué)目標(biāo)1.掌握空間向量的夾角的概念,掌握空間向量的數(shù)量積的概念、性質(zhì)和運(yùn)算律,了解空間向量數(shù)量積的幾何意義;2.掌握空間向量數(shù)量積的坐標(biāo)形式,會用向量的方法解決有關(guān)垂直、夾角和
2024-12-05 03:08