【總結(jié)】曲線與方程(2)【使用說(shuō)明及學(xué)法指導(dǎo)】1.先自學(xué)課本,理解概念,完成導(dǎo)學(xué)提綱;2.小組合作,動(dòng)手實(shí)踐?!緦W(xué)習(xí)目標(biāo)】1.求曲線的方程的方法:待定系數(shù)法,直接法,代入法。2.通過(guò)曲線的方程,研究曲線的性質(zhì).【重點(diǎn)】求曲線的方程【難點(diǎn)】通過(guò)曲線的方程,研究曲線的性質(zhì)一、自主學(xué)習(xí)P36~P37,找出
2024-11-28 00:11
【總結(jié)】曲線與方程(1)【使用說(shuō)明及學(xué)法指導(dǎo)】1.先自學(xué)課本,理解概念,完成導(dǎo)學(xué)提綱;2.小組合作,動(dòng)手實(shí)踐?!緦W(xué)習(xí)目標(biāo)】1.理解曲線的方程、方程的曲線;2.求曲線的方程.【重點(diǎn)】理解曲線的方程、方程的曲線【難點(diǎn)】求曲線的方程一、自主學(xué)習(xí)P34~P36,找出疑惑之處復(fù)習(xí)1:畫(huà)出函數(shù)22yx?
2024-11-18 16:53
【總結(jié)】雙曲線及其標(biāo)準(zhǔn)方程(二)【學(xué)習(xí)目標(biāo)】進(jìn)一步掌握雙曲線的定義,熟記雙曲線的標(biāo)準(zhǔn)方程.【自主學(xué)習(xí)】名稱橢圓雙曲線圖象xOyxOy定義平面內(nèi)到兩定點(diǎn)21,FF的距離的和為常數(shù)(大于21FF
2024-11-23 01:00
【總結(jié)】雙曲線及其標(biāo)準(zhǔn)方程(一)【學(xué)習(xí)目標(biāo)】初步掌握雙曲線的定義,熟記雙曲線的標(biāo)準(zhǔn)方程.【自主學(xué)習(xí)】:手工操作演示雙曲線的形成:(按課本52頁(yè)的做法去做)分析:(1)軌跡上的點(diǎn)是怎么來(lái)的?(2)在這個(gè)運(yùn)動(dòng)過(guò)程中,什么是不變的?2.雙曲線的定義:平面內(nèi)到兩定點(diǎn)21,FF的距離的為常數(shù)
2024-12-05 06:41
【總結(jié)】2.雙曲線的簡(jiǎn)單幾何性質(zhì)(共2課時(shí))一、教學(xué)目標(biāo)1.了解雙曲線的簡(jiǎn)單幾何性質(zhì),如范圍、對(duì)稱性、頂點(diǎn)、漸近線和離心率等。2.能用雙曲線的簡(jiǎn)單幾何性質(zhì)解決一些簡(jiǎn)單問(wèn)題。二、教學(xué)重點(diǎn)、難點(diǎn)重點(diǎn):雙曲線的幾何性質(zhì)及初步運(yùn)用。難點(diǎn):雙曲線的漸近線。三、教學(xué)過(guò)程(一)復(fù)習(xí)提問(wèn)引入新課1.橢圓有哪些幾何性質(zhì),是
2024-12-08 08:44
【總結(jié)】曲線與方程課題第1課時(shí)計(jì)劃上課日期:教學(xué)目標(biāo)知識(shí)與技能(1)了解曲線上的點(diǎn)與方程的解之間的一一對(duì)應(yīng)關(guān)系;(2)初步領(lǐng)會(huì)“曲線的方程”與“方程的曲線”的概念;[(3)學(xué)會(huì)根據(jù)已有的情景資料找規(guī)律,進(jìn)而分析、判斷、歸納結(jié)論;(4)強(qiáng)化“形”與“數(shù)”一致并相互轉(zhuǎn)化的思
2024-11-20 00:30
【總結(jié)】§圓錐曲線教學(xué)目標(biāo),經(jīng)歷從具體情境中抽象出橢圓、拋物線模型的過(guò)程,掌握它們的定義,并能用數(shù)學(xué)符號(hào)或自然語(yǔ)言的描述。2.通過(guò)用平面截圓錐面,感受、了解雙曲線的定義。能用數(shù)學(xué)符號(hào)或自然語(yǔ)言描述雙曲線的定義。教學(xué)重點(diǎn)、難點(diǎn)重點(diǎn):橢圓、拋物線、雙曲線的定義。難點(diǎn):用數(shù)學(xué)符號(hào)或自然語(yǔ)言描述三種曲線的定義[教
2024-12-08 21:22
【總結(jié)】求曲線的方程.一:直接法.例1、△ABC的頂點(diǎn)A固定,點(diǎn)A的對(duì)邊BC的長(zhǎng)是2a,邊BC上高的長(zhǎng)是b,邊BC沿一定直線移動(dòng),求△ABC外心的軌跡方程。1、設(shè)A,B兩點(diǎn)的坐標(biāo)分別是(-1,-1),(3,7).求線段AB的垂直平分線的方程練習(xí)40頁(yè)第2題求曲線的方程.
2024-11-17 15:21
【總結(jié)】圓錐曲線與方程§MQF2PO1O2VF1古希臘數(shù)學(xué)家Dandelin在圓錐截面的兩側(cè)分別放置一球,使它們都與截面相切(切點(diǎn)分別為F1,F(xiàn)2),又分別與圓錐面的側(cè)面相切(兩球與側(cè)面的公共點(diǎn)分別構(gòu)成圓O1和圓O2).過(guò)M點(diǎn)作圓錐面的一條母線分別交圓O1,圓O2與
2024-11-17 23:31
【總結(jié)】§雙曲線及其標(biāo)準(zhǔn)方程【使用說(shuō)明及學(xué)法指導(dǎo)】1.先自學(xué)課本,理解概念,完成導(dǎo)學(xué)提綱;2.小組合作,動(dòng)手實(shí)踐?!緦W(xué)習(xí)目標(biāo)】1.從具體情境中抽象出雙曲線的模型2.理解雙曲線的定義;3.掌握雙曲線的標(biāo)準(zhǔn)方程.【重點(diǎn)】理解雙曲線的定義【難點(diǎn)】掌握雙曲線的標(biāo)準(zhǔn)方程一、自主學(xué)習(xí)(一)復(fù)
2024-11-28 23:00
【總結(jié)】軌跡的“純粹性”與“完備性”“曲線的方程與方程的曲線”的定義包括兩個(gè)方面:一是曲線上點(diǎn)的坐標(biāo)都是方程的解———稱為純粹性;二是以方程的解為坐標(biāo)的點(diǎn)都在曲線上———稱為完備性.兩者缺一不可,否則就容易導(dǎo)致失誤.例1方程22(2)40xyxy?????的曲線是()A.兩個(gè)點(diǎn)B.一個(gè)圓
2024-11-20 00:26
【總結(jié)】【課堂新坐標(biāo)】(教師用書(shū))2021-2021學(xué)年高中數(shù)學(xué)求曲線的方程課后知能檢測(cè)蘇教版選修2-1一、填空題1.已知點(diǎn)A(-5,0),B(5,0),動(dòng)點(diǎn)P到A,B距離的平方和為122,則動(dòng)點(diǎn)P滿足的方程是________.【解析】依題意,設(shè)動(dòng)點(diǎn)P(x,y).由PA2+PB2=122,得(x+5)2
2024-12-04 21:34
【總結(jié)】曲線和方程學(xué)習(xí)目標(biāo):1、了解平面直角坐標(biāo)中“曲線的方程”和“方程的曲線”含義.2、會(huì)判定一個(gè)點(diǎn)是否在已知曲線上.一、知識(shí)回顧并引題:二、自學(xué)課本7573?P并記下重點(diǎn),積極思考問(wèn)題:三、自我檢測(cè):1、到兩坐標(biāo)軸距離相等的點(diǎn)組成的直線方程是0??yx嗎?2、已
2024-11-30 14:35
【總結(jié)】命題【學(xué)習(xí)目標(biāo)】1.理解什么是命題,會(huì)判斷一個(gè)命題的真假.2.分清命題的條件和結(jié)論,能將命題寫成“若p,則q”的形式.【自主學(xué)習(xí)】研讀教材,回答下列問(wèn)題::.從命題定義中可以看出,命題具備的兩個(gè)基本條件是:
2024-11-19 23:25
【總結(jié)】【課堂新坐標(biāo)】(教師用書(shū))2021-2021學(xué)年高中數(shù)學(xué)雙曲線的標(biāo)準(zhǔn)方程課后知能檢測(cè)蘇教版選修2-1一、填空題1.(2021·南京高二檢測(cè))雙曲線x25-y24=1的焦點(diǎn)坐標(biāo)是________.【解析】∵c2=5+4=9,∴c=3,∴F(±3,0).【答案】(
2024-12-05 09:29