【總結(jié)】計算導數(shù)同步練習一,選擇題:1.曲線y=ln(2x-1)上的點到直線2x-y+3=0的最短距離是()A、5B、25C、35D、02、設(shè)P點是曲線3233???xxy上的任意一點,P點處切線傾斜角為?,則角?的取值范圍是(
2024-12-05 06:39
【總結(jié)】拓展資料:拉格朗日法國數(shù)學家、力學家及天文學家拉格朗日于1736年1月25日在意大利西北部的都靈出生。少年時讀了哈雷介紹牛頓有關(guān)微積分之短文,因而對分析學產(chǎn)生興趣。他亦常與歐拉有書信往來,于探討數(shù)學難題「等周問題」之過程中,當時只有18歲的他就以純分析的方法發(fā)展了歐拉所開創(chuàng)的變分法,奠定變分法之理論基礎(chǔ)。后入都靈大學。1755年,
2024-12-05 06:37
【總結(jié)】類比推理學習目標1.結(jié)合已學過的數(shù)學實例,了解類比推理的含義;2.能利用類比進行簡單的推理,體會并認識合情推理在數(shù)學發(fā)現(xiàn)中的作用.學習過程一、課前準備0(1,2,,)iain??,考察下列式子:111()1iaa??;121211()()()4iiaaaa???;
2024-11-19 23:15
【總結(jié)】導數(shù)在實際問題中的應(yīng)用目標認知學習目標:1.會從幾何直觀了解函數(shù)單調(diào)性和導數(shù)的關(guān)系;能利用導數(shù)研究函數(shù)的單調(diào)性,會求函數(shù)的單調(diào)區(qū)間,對多項式函數(shù)一般不超過三次.2.了解函數(shù)在某點取得極值的必要條件(導數(shù)在極值點兩端異號)和充分條件();會用導數(shù)求函數(shù)的極大值、極小值,對多項式函數(shù)一般不超過三次.3.會求閉區(qū)間上函數(shù)的
2024-12-04 23:43
【總結(jié)】歸納推理學習目標1.結(jié)合已學過的數(shù)學實例,了解歸納推理的含義;2.能利用歸納進行簡單的推理,體會并認識歸納推理在數(shù)學發(fā)現(xiàn)中的作用.學習過程一、課前準備在日常生活中我們常常遇到這樣的現(xiàn)象:(1)看到天空烏云密布,燕子低飛,螞蟻搬家,推斷天要下雨;(2)八月十五云遮月,來年正月十五雪打燈.以上例子可以得出推
【總結(jié)】第3課時函數(shù)的最值.[a,b]上連續(xù)函數(shù)f(x)的最大值和最小值的思想方法和步驟..如圖,設(shè)鐵路線AB=50km,點C處與B之間的距離為10km,現(xiàn)將貨物從A運往C,已知1km鐵路費用為2元,1km公路費用為4元,在AB上M處修筑公路至C,使運費由A到C最省,求
2024-11-19 23:17
【總結(jié)】第6課時全稱命題、特稱命題與邏輯聯(lián)結(jié)詞的綜合應(yīng)用.,進行綜合應(yīng)用.,進行綜合應(yīng)用.前面我們講過一個故事,一位文藝批評家在路上遇到歌德走來,不僅沒有相讓,反而賣弄聰明,一邊高傲地往前走,一邊大聲說道:“我從來不給傻子讓路!”面對如此尷尬局面,只見歌德笑容可掬,謙恭地閃在一旁,一
2024-12-05 01:49
【總結(jié)】導數(shù)的四則運算法則一、教學目標:掌握八個函數(shù)求導法則及導數(shù)的運算法則并能簡單運用.二、教學重點:應(yīng)用八個函數(shù)導數(shù)求復雜函數(shù)的導數(shù)..教學難點:商求導法則的理解與應(yīng)用.三、教學過程:(一)新課1.基本初等函數(shù)的導數(shù)公式(見教材)2.導數(shù)運算法則:(1).和(或差)的導數(shù)法則1兩個函數(shù)的和(或差)的導數(shù),等
【總結(jié)】變化的快慢與變化率【例1】已知質(zhì)點M按規(guī)律s=2t2+3作直線運動(位移單位:cm,時間單位:s),當t=2,Δt=,求ts??;(2)當t=2,Δt=,求ts??;(3)求質(zhì)點M在t=2時的瞬時速度【例2】某一物體的運動規(guī)律為s=t3-t2+2t+5(其中s表示位移,t表
2024-11-19 23:16
【總結(jié)】拓展資料:導數(shù)在證明恒等式中的應(yīng)用一、預備知識定理1若函數(shù)f(x)在區(qū)間I上可導,且x∈I,有f′(x)=0,則x∈I,有f(x)=c(常數(shù)).證明在區(qū)間I上取定一點x0及x∈I.顯然,函數(shù)f(x)在[x0,x]或[x,x0]上滿足拉格朗日定理,有f(x)-f(x0)=f′(ξ)(x
【總結(jié)】變化的快慢與變化率一、教學目標(1)理解瞬時速度,會運用瞬時速度的定義求物體在某一時刻的瞬時速度(2)理解瞬時變化率概念,實際背景,培養(yǎng)學生解決實際問題的能力二、教學重點、難點重點:瞬時速度,瞬時變化率概念及計算難點:瞬時變化率的實際意義和數(shù)學意義三、教學過程(一)、復習引入1、什么叫做平均變化
【總結(jié)】江蘇省建陵高級中學2021-2021學年高中數(shù)學導數(shù)概念導學案(無答案)蘇教版選修1-1【學習任務(wù)】1.了解導數(shù)的概念.2.掌握用導數(shù)的定義求導數(shù)的一般方法.3.在了解導數(shù)與幾何意義的基礎(chǔ)上,加深對導數(shù)概念的理解.【課前預習】1、函數(shù)223yxx??在3x?時的導數(shù)為,在
2024-12-04 18:01
【總結(jié)】第三章導數(shù)及其應(yīng)用(時間90分鐘,滿分120分)一、選擇題(本大題共10小題,每小題5分共50分,在每小題給出的四個選項中,只有一項是符合題目要求的)1.設(shè)質(zhì)點M按規(guī)律s=3t2+5作直線運動,則質(zhì)點M()A.在t=1時的瞬時速度為11B.在t=2時的瞬時速度為12C.在t=3時的瞬時速度為1
2024-12-05 01:51
【總結(jié)】原命題,pq若則逆命題,qp若則逆否命題,qp若非則非否命題,pq若非則非命題學習目標:理解命題的概念和命題的構(gòu)成,能判斷命題的真假;了解四種命題的的含義,能寫出給定命題的逆命題、否命題和逆否命題;會分析四種命題之間的相互關(guān)系;重點難點:命題的概念、命題的構(gòu)成;分清命題的條件、結(jié)論和判
【總結(jié)】-*-§3計算導數(shù)首頁XINZHIDAOXUE新知導學ZHONGNANTANJIU重難探究DANGTANGJIANCE當堂檢測學習目標思維脈絡(luò)1.能根據(jù)導數(shù)的定義求幾種常用函數(shù)的導數(shù),并能熟練運用.在公式推導過程中注意創(chuàng)新思維的培養(yǎng).2.掌握基本初等函數(shù)的求導公式,并能利用這些
2024-11-16 23:23