【總結(jié)】abrOMP?任意角的三角函數(shù)1.(回憶)銳角三角函數(shù)(直角三角形中)abrarb??????tancossin(直角坐標(biāo)系中)使銳角的頂點(diǎn)與原點(diǎn)重合,始邊與軸的正半軸重合.?xabrarb?????
2024-11-18 08:49
【總結(jié)】課題:任意角的三角函數(shù)(2)一:學(xué)習(xí)目標(biāo)1.進(jìn)一步掌握任意角的正弦、余弦、正切的定義,會(huì)用角α的正弦線、余弦線、正切線分別表示任意角α的正弦、余弦、正切函數(shù)值;2.進(jìn)一步掌握正弦、余弦、正切的函數(shù)的定義域和這三種函數(shù)的值在各象限的符號(hào)。二:課前預(yù)習(xí)(1)已知角?的終邊經(jīng)過點(diǎn)(1,2)?,則cos?的值為_____
2024-11-20 01:06
【總結(jié)】函數(shù)的周期性一、周期函數(shù)的定義對(duì)于函數(shù),如果存在一個(gè)非零常數(shù),使得當(dāng)取定義域內(nèi)的每一個(gè)值時(shí),都有,那么函數(shù)就叫做周期函數(shù),非零常數(shù)叫做這個(gè)函數(shù)的周期。說明:(1)必須是常數(shù),且不為零;(2)對(duì)周期函數(shù)來說必須對(duì)定義域內(nèi)的任意都成立。二、常見函數(shù)的最小正周期正弦函數(shù)y=sin(ωx+φ)(w0)最小正周期為T=y=cos(ωx+φ)(w>
2024-08-17 19:39
【總結(jié)】2021-1-23高中數(shù)學(xué)蘇教版必修4三角函數(shù)知識(shí)點(diǎn)總結(jié)一、角的概念和弧度制:(1)在直角坐標(biāo)系內(nèi)討論角:角的頂點(diǎn)在原點(diǎn),始邊在x軸的正半軸上,角的終邊在第幾象限,就說過角是第幾象限的角。若角的終邊在坐標(biāo)軸上,就說這個(gè)角不屬于任何象限,它叫象限界角。(2)①與?角終邊相同的角的集合:},2|{},360|{0ZkkZkk?????
2024-12-18 04:37
【總結(jié)】江蘇省建陵高級(jí)中學(xué)2021-2021學(xué)年高中數(shù)學(xué)三角函數(shù)的導(dǎo)學(xué)案蘇教版必修4課題:班級(jí):姓名:一:學(xué)習(xí)目標(biāo)1.會(huì)用三角函數(shù)解決一些簡(jiǎn)單的問題,體會(huì)三角函數(shù)是描述周期變化現(xiàn)象的重要函數(shù)模型。2.觀察函數(shù)圖像,學(xué)會(huì)用待定系數(shù)法求解析式,能夠?qū)⑺l(fā)現(xiàn)的規(guī)律抽象
2024-12-05 10:16
【總結(jié)】三角函數(shù)的應(yīng)用【學(xué)習(xí)目標(biāo)】:,體會(huì)三角函數(shù)是描述周期現(xiàn)象的重要模型..【重點(diǎn)難點(diǎn)】:建立三角函數(shù)的模型一、預(yù)習(xí)指導(dǎo)1、三角函數(shù)可以作為描述現(xiàn)實(shí)世界中____________________________現(xiàn)象的一種數(shù)學(xué)模型.2、利用三角函數(shù)解決實(shí)際問題的一般步驟:(1)審題,獲取有用信息;(2)構(gòu)建三角函數(shù)
【總結(jié)】高一數(shù)學(xué)第一次月考試題一.選擇題(每題5分,共60分)1.函數(shù)的最小正周期是()A. B. C. D.2.=() A. B. C.- D.-3.如圖,在直角坐標(biāo)系xOy中,射線OP交單位圓O于點(diǎn)P,若∠AOP=θ,則點(diǎn)P的坐標(biāo)是( )A.(cosθ,sinθ)B.(-co
2025-04-04 05:05
【總結(jié)】任意角的三角函數(shù)任意角的三角函數(shù)(一)一、填空題1.當(dāng)α為第二象限角時(shí),|sinα|sinα-cosα|cosα|的值是________.2.角α的終邊經(jīng)過點(diǎn)P(-b,4)且cosα=-35,則b的值為________.3.已知sinθ2tanθ0,則角θ位于第___
2024-12-05 03:25
【總結(jié)】三角函數(shù)的誘導(dǎo)公式一、錯(cuò)解點(diǎn)擊是否存在角α,β,α∈(2??,2?),β∈(0,π),使得等式sin(3π-α)=2cos(2?-β),3cos(-α)=-2cos(π+β)同時(shí)成立?若存在,求出α,β的值;若不存在,請(qǐng)說明理由.錯(cuò)解:將已知條件化為???????,cos2
2024-11-19 20:39
【總結(jié)】課題:同角三角函數(shù)關(guān)系班級(jí):姓名:【學(xué)習(xí)目標(biāo)】,并體會(huì)它們?cè)谌呛瘮?shù)式的化簡(jiǎn)、求值和三角恒等式證明中的應(yīng)用。【課前預(yù)習(xí)】1、角?的終邊經(jīng)過點(diǎn)(4,3)(0)Paaa??,求?sin和?cos的值。2、你能
2024-12-05 10:17
【總結(jié)】§(1)§(2)§(2)§(1)§二倍角的三角函數(shù)西鄉(xiāng)中學(xué)高一備課組公式例1小結(jié)作業(yè)課堂練習(xí)引入問題1二倍角的三角函數(shù)精講精練例2知識(shí)探究:計(jì)算:(1
【總結(jié)】3.3幾個(gè)三角恒等式變換是數(shù)學(xué)的重要工具,也是數(shù)學(xué)學(xué)習(xí)的主要對(duì)象之一,三角主要有以下三個(gè)基本的恒等變換:(1)代換;(2)公式的逆向變換和多向變換;(3)引入輔助角的變換.前面已利用誘導(dǎo)公式進(jìn)行過簡(jiǎn)易的恒等變換,本節(jié)中將綜合運(yùn)用和(差)角公式、倍角公式進(jìn)行更加豐富的三角恒等變換.1.sin2α2=_______
2024-12-05 03:24
【總結(jié)】【金版學(xué)案】2021-2021學(xué)年高中數(shù)學(xué)第1章三角函數(shù)本章知識(shí)整合蘇教版必修4網(wǎng)絡(luò)構(gòu)建三角函數(shù)基本概念的應(yīng)用若角θ的終邊與函數(shù)y=-2|x|的圖象重合,求θ的各三角函數(shù)值.分析:由于y=-2|x|=?????-2x,x≥0,2x,x<0的圖象
2024-12-05 03:23
【總結(jié)】?jī)山呛团c差的正弦、余弦、正切公式????????sincoscossinsin????????????sinsincoscoscos????????????tantantantantan?1???????????sincoscossinsin????
【總結(jié)】課題:三角函數(shù)的誘導(dǎo)公式(1)班級(jí):姓名:一:學(xué)習(xí)目標(biāo)1.通過學(xué)生的探究,明了三角函數(shù)的誘導(dǎo)公式的來龍去脈,理解誘導(dǎo)公式的推導(dǎo)過程;2.通過誘導(dǎo)公式的具體運(yùn)用,熟練正確地運(yùn)用公式解決一些三角函數(shù)的求值、化簡(jiǎn)和證明問題;二:課前預(yù)習(xí)教學(xué)重點(diǎn):