【總結】§演繹推理小明是一名高二年級的學生,17歲,迷戀上網絡,沉迷于虛擬的世界當中。由于每月的零花錢不夠用,便向親戚要錢,但這仍然滿足不了需求,于是就產生了歹念,強行向路人搶取錢財。但小明卻說我是未成年人而且就搶了50元,這應該不會很嚴重吧???情景創(chuàng)設1:生活中的例子如果你是法官,你會如何判決呢?小明到底是不是犯
2024-11-18 01:21
【總結】高二數(shù)學學案編號20班級姓名§復數(shù)代數(shù)形式的除法運算一、學習目標:1:理解并掌握復數(shù)的代數(shù)形式與除法運算法則,深刻理解它是乘法運算的逆運算奎屯王新敞新疆2:理解并掌握復數(shù)的除法運算實質是分母實數(shù)化類問題奎
2024-12-02 10:00
【總結】1曲邊梯形面積與定積分2::"",特定形式和的極限且都可以歸結為求一個、取極限得到解決,分割、近似代替、求和四步曲它們都可以通過的過程可以發(fā)現(xiàn)變速直線運動路程從曲邊梯形面積以及求????;ξfn1limxΔξflimSin1inn1ii0xΔ???????
【總結】導數(shù)公式【教學目標】能根據(jù)導數(shù)的定義,求函數(shù)cy?,xy?,2xy?,xy1?,xy?的導數(shù)。能利用給出的基本初等函數(shù)的導數(shù)公式和導數(shù)的四則運算法則求簡單函數(shù)的導數(shù)?!窘虒W重點】常數(shù)函數(shù)、冪函數(shù)的導數(shù)【教學難點】利用公式求導一、課前預習(閱讀教材14--17頁,填寫知識點)__
2024-11-19 10:27
【總結】復習:合情推理?歸納推理從特殊到一般?類比推理從特殊到特殊從具體問題出發(fā)觀察、分析比較、聯(lián)想提出猜想歸納類比觀察與是思考,2整除,,銅能夠導電.銅是金屬,
2024-11-18 15:24
【總結】曲邊梯形的面積與定積分【教學目標】—分割、以直代曲、求和、取極限;了解定積分的概念及幾何意義;;“質量互變、對立統(tǒng)一”的觀點.【教學重點】定積分的概念【教學難點】以曲代直一、課前預習:閱讀教材36頁—38頁,完成下列問題例1:求曲線2xy?與直線0,1??yx所圍成區(qū)域的面積.(1)分割:將區(qū)間
【總結】反證法一.反證法證明命題“設p為正整數(shù),如果p2是偶數(shù),則p也是偶數(shù)”,我們可以不去直接證明p是偶數(shù),而是否定p是偶數(shù),然后得到矛盾,從而肯定p是偶數(shù)。具體證明步驟如下:假設p不是偶數(shù),可令p=2k+1,k為整數(shù)??傻胮2=4k2+4k+1,此式表明,p2是奇數(shù),這與假設矛盾,因此假設p不是偶數(shù)不成立,從而證明
【總結】復數(shù)z=a+bi直角坐標系中的點Z(a,b)xyobaZ(a,b)建立了平面直角坐標系來表示復數(shù)的平面x軸------實軸y軸------虛軸(數(shù))(形)------復數(shù)平面(簡稱復平面)一一對應z=a+bi復數(shù)的幾何意義(一)
2024-11-18 15:23
【總結】-歸納推理歌德巴赫猜想:“任何一個不小于6的偶數(shù)都等于兩個奇數(shù)之和”即:偶數(shù)=奇質數(shù)+奇質數(shù)哥德巴赫猜想(GoldbachConjecture)世界近代三大數(shù)學難題之一。哥德巴赫是德國一位中學教師,也是一位著名的數(shù)學家,生于1690年,1725年當選為俄國彼得堡科學院院士。1742年,哥德巴赫在教學中發(fā)現(xiàn),每個
【總結】演繹推理演繹推理課時安排:兩課時課型:新授課教學目標:一、知識與技能:了解演繹推理的含義,能利用“三段論”進行簡單的推理。二、過程與方法:結合具體實例,了解演繹推理與合情推理的聯(lián)系和差異。三、情感態(tài)度價值觀:
【總結】1、觀察1+3=4=22,1+3+5=9=32,1+3+5+7=16=42,1+3+5+7+9=25=,……由上述具體事實能得到怎樣的結論?2、在平面內,若a⊥c,b⊥c,則a//b.類比地推廣到空間,你會得到什么結論?并判斷正誤。正確錯誤(可能相交)
【總結】復數(shù)的運算(二)【教學目標】掌握復數(shù)的除法運算,深刻理解它是乘法運算的逆運算;理解并掌握復數(shù)的除法運算實質是分母實數(shù)化類問題;體會到知識是生產實踐的需要從而積極主動地建構知識體系.【教學重點】復數(shù)除法運算規(guī)則【教學難點】分母實數(shù)化一、課前預習:(教材95頁)1.已知),(Rbabiaz???,則?z1
【總結】12.,??""""?."",.,;"",定積分學知識我們需要學習新的數(shù)為此直線運動的問題速解決變的知識能否利用勻速直線運動積面直邊圖形轉化為求面積曲邊圖形把求能否呢如何解決這些問題變力做功的問題物體位移、的面積、變速直線運動曲邊圖形的平
【總結】§微積分基本定理學習目標思維脈絡1.通過實例能直觀了解微積分基本定理.2.能利用微積分基本定理求基本函數(shù)的定積分.3.了解導數(shù)與定積分的關系.4.能在具體的應用中體會微積分基本定理的作用和意義.微積分基本定理微積分基本定理:如果連續(xù)函數(shù)f(x)
2024-11-18 13:32
【總結】利用導數(shù)判斷函數(shù)的單調性【教學目標】了解并掌握函數(shù)單調性的定義以及導數(shù)與函數(shù)單調性的關系,會利用導數(shù)求函數(shù)的單調區(qū)間,會利用導數(shù)畫出函數(shù)的大致圖像?!窘虒W重點】利用導數(shù)求單調區(qū)間【教學難點】導數(shù)與單調性的關系一、課前預習(閱讀教材24--25頁,填寫知識點.):怎樣判斷函數(shù)的單調性?1、__________2、__
2024-12-03 11:30