【總結】一、教材分析:本節(jié)內(nèi)容是前面圓的性質(zhì)的重要體現(xiàn),是圓的軸對稱性的具體化,也是今后證明線段相等、角相等、弧相等、垂直關系的重要依據(jù),同時也是為進行圓的計算和作圖提供了方法和依據(jù),所以它在教材中處于非常重要的位置另外,本節(jié)課通過“實驗--觀察--猜想——合作交流——證明”的途徑,進一步培養(yǎng)學生的動手能力,觀察能力,分析、聯(lián)想能力、與人合作
2024-12-05 15:48
【總結】2.圓的對稱性(3)圓心角,弧,弦,弦心距之間的關系●O(1)圓是中心對稱圖形嗎?(2)如果是,它的對稱中心是什么?圓也是中心對稱圖形.它的對稱中心就是圓心.·O圓心角頂點在圓心的角(如∠AOB).圓心角的概念AB如圖,在⊙O中,分別作相等的圓心角∠AOB和
2024-11-06 14:26
【總結】義務教育課程標準實驗教科書SHUXUE九年級下湖南教育出版社觀察·OAB記作,AMB記作;AB如圖圓O上兩點A,B間的小于半圓的部分叫作劣弧,A,B間的大于半圓的部分叫作優(yōu)弧,其中M是圓上一點.M·
2024-11-30 14:05
【總結】..圓的對稱性【典型例題】?例1.如圖,在Rt△ABC中,∠C=90°,AC=3,BC=4,以點C為圓心,CA為半徑的圓與AB、BC分別交于點D、E。求AB、AD的長。分析:求AB較簡單,求弦長AD可先求AF。解:例2.如圖,⊙O中,弦AB=10cm,P是弦AB上一點,且PA=4cm,OP=5
2024-08-14 04:44
【總結】.圖1圖2九年級數(shù)學圓的對稱性(1)教學案學習目標:1、會利用圓的軸對稱性探究垂徑定理、證明垂徑定理;2、能利用垂徑定理進行相關的計算和證明;3、掌握垂徑定理的推論。學習重點:垂徑定理的證明與簡單應用;學習難點:垂徑定理的證明及其簡單應用。學習過程:一、復習提問:1、什么是軸對稱
2024-12-09 03:54
【總結】圓的對稱性【典型例題】?例1.如圖,在Rt△ABC中,∠C=90°,AC=3,BC=4,以點C為圓心,CA為半徑的圓與AB、BC分別交于點D、E。求AB、AD的長。分析:求AB較簡單,求弦長AD可先求AF。解:例2.如圖,⊙O中,弦AB=10cm,P是弦AB上一點,且PA=4cm,OP=5cm,求⊙O的半徑。分析:⊙
2025-06-22 15:49
【總結】圓的對稱性教學過程(一)明確目標同學們請觀察老師手中的圓形圖片.AB為⊙O的直徑.①我把⊙O沿著AB折疊,兩旁部分互相重合,我們知道這個圓是一個軸對移圖形.②若把⊙O沿著圓心O旋轉(zhuǎn)180°時;兩旁部分互相重合,這時我們可以發(fā)現(xiàn)圓又是一個中心對稱圖形.由學生總結圓不僅是軸對稱圖形,圓也是中心對稱圖形.若一個
2024-11-19 20:34
【總結】教學目標:1.知識與技能:圓的旋轉(zhuǎn)不變性,圓心角、弧、弦之間相等關系定理.2.過程與方法:通過觀察、比較、操作、推理、歸納等活動發(fā)展空間觀念、推理能力以及概括問題的能力,利用圓的旋轉(zhuǎn)不變性,研究圓心角、弧、弦之間相等關系定理.3.情感態(tài)度與價值觀:培養(yǎng)學生積極探索數(shù)學問題的態(tài)度及方法.教學重點:圓心角、弧、弦之間關系定理教學
2024-12-01 04:14
【總結】圓的對稱性教學目標:(1)知識與能力:通過本課的學習,學生在知識上要了解圓的對稱性及垂徑定理,在能力上要學會從表象中抽象出本質(zhì)規(guī)律,提高邏輯思維能力與推理能力。(2)過程與方法:在教學過程中,要讓學生親自動手去做去體會,并讓他們相互交流,然后根據(jù)實際情況加以啟發(fā),引導讓他們自己去總結出規(guī)律。(3)情感、態(tài)度與價值觀:A、本課
2024-11-19 08:37
【總結】第1題.若圓的半徑為3,圓中一條弦為25,則此弦中點到弦所對劣弧的中點的距離為.答案:1第2題.若AB是O的直徑,弦CDAB⊥于E,16AE?,4BE?,則CD?,AC?.答案:1685第3題.已知在O中,CD為直徑,AB是弦,ABCD⊥于M,15
2024-11-15 19:37
【總結】例3:⑴如圖,順次連結⊙O的兩條直徑AC和BD的端點,所得的四邊形是什么特殊四邊形?ODCBA⑵如果要把直徑為30cm的圓柱形原木鋸成一根橫截面為正方形的木材,并使截面盡可能地大,應怎樣鋸?最大橫截面面積是多少?⑶如果這根原木長15m,問鋸出地木材的體積為多少m3(樹皮等損耗略去不計)?ODC
2024-11-12 18:26
【總結】課題:圓的軸對稱性(1)教學目標1.使學生理解圓的軸對稱性.2.掌握垂徑定理.3.學會運用垂徑定理解決有關弦、弧、弦心距以及半徑之間的證明和計算問題.教學重點垂徑定理是圓的軸對稱性的重要體現(xiàn),是今后解決有關計算、證明和作圖問題的重要依據(jù),它有著廣泛的應用,因此,本節(jié)課的教學重點是:垂徑定理及其應用.教學難點
2024-11-20 02:16
【總結】1、圓是對稱圖形嗎?它有哪些對稱性?回顧:圓既是軸對稱圖形,又是中心對稱圖形,也是旋轉(zhuǎn)對稱圖形。旋轉(zhuǎn)角度可以是任意度數(shù)。對稱軸是過圓心任意一條直線。2、能否用手中的圓演示出它的各種對稱性呢?圓的對稱軸在哪里,對稱中心和旋轉(zhuǎn)中心在哪里?將圖中的扇形AOB繞點O逆時針旋轉(zhuǎn)某個角度。在得到的圖形中,同學們可以通
2024-12-01 00:45
【總結】圓的對稱性第二課時九年級數(shù)下學期北師大版1、圓是對稱圖形嗎?它有哪些對稱性?;仡櫍簣A既是軸對稱圖形,又是中心對稱圖形.2、能否用手中的圓演示出它的各種對稱性呢?圓的對稱軸在哪里,對稱中心在哪里?OO'兩個圓有什么特點?●O用旋轉(zhuǎn)的方法可以得到:一個圓繞著它的圓
2024-11-06 23:20
【總結】第2章圓圓的對稱性圓是生活中常見的圖形,許多物體都給我們以圓的形象.圓是平面內(nèi)到一定點的距離等于定長的所有點組成的圖形.·定長叫作半徑.這個定點叫作圓心.OA圓也可以看成是平面內(nèi)一個動點繞一個定點旋轉(zhuǎn)一周所形成的圖形,定點叫作圓心.以點O為圓心的圓叫作圓O,記作⊙
2024-12-08 02:59