freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

公開(kāi)課教學(xué)設(shè)計(jì)(編輯修改稿)

2024-10-14 01:45 本頁(yè)面
 

【文章內(nèi)容簡(jiǎn)介】 視或壓縮這些過(guò)程,一味灌輸知識(shí)的結(jié)論,就必然失去滲透數(shù)學(xué)思想、方法的一次次良機(jī)。如華東師大版第二章《有理數(shù)》,與原來(lái)部編教材相比,它少了一節(jié)——“有理數(shù)大小的比較”,而它的要求則貫穿在整章之中。在數(shù)軸教學(xué)之后,就引出了“在數(shù)軸上表示的兩個(gè)數(shù),右邊的數(shù)總比左邊的數(shù)大”,“正數(shù)都大于0,負(fù)數(shù)都小于0,正數(shù)大于一切負(fù)數(shù)”。而兩個(gè)負(fù)數(shù)比大小的全過(guò)程單獨(dú)地放在絕對(duì)值教學(xué)之后解決。教師在教學(xué)中應(yīng)把握住這個(gè)逐級(jí)滲透的原則,既使這一章節(jié)的重點(diǎn)突出,難點(diǎn)分散;又向?qū)W生滲透了形數(shù)結(jié)合的思想,學(xué)生易于接受。在滲透數(shù)學(xué)思想、方法的過(guò)程中,教師要精心設(shè)計(jì)、有機(jī)結(jié)合,要有意識(shí)地潛移默化地啟發(fā)學(xué)生領(lǐng)悟蘊(yùn)含于數(shù)學(xué)之中的種種數(shù)學(xué)思想方法,切忌生搬硬套,和盤(pán)托出,脫離實(shí)際等錯(cuò)誤做法。比如,教學(xué)二次不等式解集時(shí)結(jié)合二次函數(shù)圖象來(lái)理解和記憶,總結(jié)歸納出解集在“兩根之間”、“兩根之外”,利用形數(shù)結(jié)合方法,從而比較順利地完成新舊知識(shí)的過(guò)渡。在思維教學(xué)活動(dòng)過(guò)程中,揭示數(shù)學(xué)思想方法數(shù)學(xué)課堂教學(xué)必須充分暴露思維過(guò)程,讓學(xué)生參與教學(xué)實(shí)踐活動(dòng),揭示其中隱含的數(shù)學(xué)思想,才能有效地發(fā)展學(xué)生的數(shù)學(xué)思想,提高學(xué)生的數(shù)學(xué)素養(yǎng),下面以“多邊形內(nèi)角和定理”的課堂教學(xué)為例,簡(jiǎn)要說(shuō)明。教學(xué)目標(biāo):增強(qiáng)運(yùn)用化歸思想處理多邊形問(wèn)題的一般策略;掌握運(yùn)用類(lèi)比、歸納、猜想思想指導(dǎo)思維,發(fā)現(xiàn)多邊形內(nèi)角和定理的結(jié)論;學(xué)會(huì)用化歸思想指導(dǎo)探索論證途徑,掌握化歸方法;加強(qiáng)數(shù)形結(jié)合思想的應(yīng)用意識(shí)。教學(xué)過(guò)程:(1)創(chuàng)設(shè)問(wèn)題情境,激發(fā)探索欲望,蘊(yùn)涵類(lèi)比化歸思想。教師:三角形和四邊形的內(nèi)角和分別為多少?四邊形內(nèi)角和是如何探求的?(轉(zhuǎn)化為三角形)那么,五邊形內(nèi)角和你會(huì)探索求嗎?六邊形、七邊形?? n 邊形內(nèi)角和又是多少呢?(2)鼓勵(lì)大膽猜想,指導(dǎo)發(fā)現(xiàn)方法,滲透類(lèi)比、歸納、猜想思想。教師:從四邊形內(nèi)角和的探求方法,能給你什么啟發(fā)呢?五邊形如何化歸為三角形?數(shù)目是多少?六邊形?? n 邊形呢?你能否用列表的方式給出多邊形內(nèi)角和與它們邊數(shù)、化歸為三角形的個(gè)數(shù)之間的關(guān)系?從中你能發(fā)現(xiàn)什么規(guī)律?猜一猜 n 邊形內(nèi)角和有何結(jié)論?類(lèi)比、歸納、猜想的含義和作用,你能理解和認(rèn)識(shí)嗎?(3)暴露思維過(guò)程、探索論證方法,揭示化歸思想、分類(lèi)方法。我們?nèi)绾悟?yàn)證或推斷上面猜想的結(jié)論呢?既然多邊形內(nèi)角和可化歸為三角形來(lái)處理,那么化歸方法是否唯一的呢?一點(diǎn)與多邊形的位置關(guān)系怎樣?(分類(lèi)思想指導(dǎo)化歸方法的探索)哪一種對(duì)獲取證明最簡(jiǎn)潔?(至此,教材中在多邊形內(nèi)任取一點(diǎn) O,連結(jié)點(diǎn)O與多邊形的每一個(gè)頂點(diǎn),可得幾個(gè)三角形的思維過(guò)程得以充分自然地暴露)(4)反思探索過(guò)程,優(yōu)化思維方法,激活化歸思想。教師:從上面的探索過(guò)程中,我們發(fā)現(xiàn)化歸思想有很大作用,但是,又是什么啟發(fā)我們用這種思想指導(dǎo)解決問(wèn)題呢?原來(lái),我們是選擇考察幾個(gè)具體的多邊形,如四邊形、五邊形等,發(fā)現(xiàn)特殊情形下的解決方法,再把它運(yùn)用到一種特殊化思想當(dāng)中。我們?cè)賮?lái)考察一下式子: n 邊形內(nèi)角和 =n180176。360176。,你能設(shè)計(jì)一個(gè)幾何圖形來(lái)解釋嗎?對(duì)于 n 邊形內(nèi)角和=(n1)180176。180176。,又能作怎樣的幾何解釋呢?(至此,我們又可探索出另一種思維方法,即”在多邊形某一邊上任取一點(diǎn) O,連結(jié)點(diǎn)O與多邊形的每一個(gè)頂點(diǎn)來(lái)分割三角形)讓學(xué)生親自參加與探索定理的結(jié)論及證明過(guò)程,大大激發(fā)了學(xué)生的求知興趣,同時(shí),他們也體驗(yàn)到“創(chuàng)造發(fā)明”的愉悅,數(shù)學(xué)思想在這一過(guò)程中得到了有效的發(fā)展。在問(wèn)題解決過(guò)程中強(qiáng)化數(shù)學(xué)思想方法在數(shù)學(xué)教學(xué)活動(dòng)中,常常出現(xiàn)這樣的現(xiàn)象:學(xué)生在課堂聽(tīng)懂了,但課后解題,特別是遇到新題型便無(wú)所適從。究其原因就在于教師在教學(xué)中僅僅是就題論題,殊不知授之以“漁”比授之以“魚(yú)”更為重要。因此,在數(shù)學(xué)問(wèn)題的探索的教學(xué)中重要的是讓學(xué)生真正領(lǐng)悟隱含于數(shù)學(xué)問(wèn)題探索中的數(shù)學(xué)思想方法。針對(duì)這種現(xiàn)象,教師應(yīng)全面展示知識(shí)發(fā)生發(fā)展過(guò)程,并發(fā)揮學(xué)生的主體作用,充分調(diào)動(dòng)學(xué)生參與數(shù)學(xué)的全過(guò)程,讓全體學(xué)生能在躬行的探索中理解知識(shí),掌握方法,感悟數(shù)學(xué)思想[2]。例如:求下圖中∠BCA的度數(shù)。方法1:先求出∠BAC=600,后利用三角形內(nèi)角和即可得∠BCA=1800600350=850 方法2:直接利用三角形外角性質(zhì),求得∠BCA=1200350=850 顯然上述的問(wèn)題解決過(guò)程中,學(xué)生通過(guò)比較不同的方法,體會(huì)到了數(shù)學(xué)思想在解題中的重要作用,激發(fā)學(xué)生的求知興趣,從而加強(qiáng)了對(duì)數(shù)學(xué)思想的認(rèn)識(shí)。及時(shí)總結(jié)以逐步內(nèi)化數(shù)學(xué)思想方法數(shù)學(xué)教材是采用蘊(yùn)含披露的方式將數(shù)學(xué)思想溶于數(shù)學(xué)知識(shí)體系中,因此,適時(shí)對(duì)數(shù)學(xué)思想做出歸納、概括是十分必要的。概括數(shù)學(xué)思想方法要納入教學(xué)計(jì)劃,應(yīng)有目的、有步驟地引導(dǎo)學(xué)生參與數(shù)學(xué)思想的提煉概括過(guò)程,尤其是在章節(jié)結(jié)束或單元復(fù)習(xí)中對(duì)知識(shí)復(fù)習(xí)的同時(shí),將統(tǒng)攝知識(shí)的數(shù)學(xué)思想方法概括出來(lái),可以加緊學(xué)生對(duì)數(shù)學(xué)思想方法的運(yùn)用意識(shí),也使其對(duì)運(yùn)用數(shù)學(xué)思想解決問(wèn)題的具體操作方式有更深刻的了解,有利于活化所學(xué)知識(shí),形成獨(dú)立分析、解決問(wèn)題的能力。概括數(shù)學(xué)思想一般可分兩步進(jìn)行:一是揭示數(shù)學(xué)思想的內(nèi)容、規(guī)律,即將數(shù)學(xué)對(duì)象共同具有屬性或關(guān)系抽取出來(lái);二是明確數(shù)學(xué)思想方法與知識(shí)的聯(lián)系,即將抽取出來(lái)的共性推廣到同類(lèi)的全部對(duì)象上去,從而實(shí)現(xiàn)從個(gè)別性認(rèn)識(shí)上升為一般性認(rèn)識(shí)。比如,通過(guò)解方程(x2)2 +(x2)2=0,發(fā)現(xiàn)也可用換元法來(lái)求解。在此基礎(chǔ)上推廣也可用換元法求解。由此概括出換元法可以將復(fù)雜方程轉(zhuǎn)化為簡(jiǎn)單方程,從而認(rèn)識(shí)到化歸思想是對(duì)換元法的高度概括,還可進(jìn)一步認(rèn)識(shí)到數(shù)學(xué)思想是數(shù)學(xué)的靈魂,它是對(duì)數(shù)學(xué)知識(shí)的高度概括。由于同一數(shù)學(xué)知識(shí)可表現(xiàn)出不同的數(shù)學(xué)思想方法,而同一數(shù)學(xué)思想方法又常常分布在許多不同的知識(shí)點(diǎn)里,所以通過(guò)課堂小結(jié)、單元總結(jié)或總復(fù)習(xí),甚至是某個(gè)概念、定理公式、問(wèn)題數(shù)學(xué)都可以在縱橫兩方面歸納概括出數(shù)學(xué)思想方法。四、數(shù)學(xué)思想方法教學(xué)的心理學(xué)意義。美國(guó)心理學(xué)家布魯納認(rèn)為,“不論我們選教什么學(xué)科,務(wù)必使學(xué)生理解該學(xué)科的基本結(jié)構(gòu)?!彼^基本結(jié)構(gòu)就是指“基本的、統(tǒng)一的觀點(diǎn),或者是一般的、基本的原理?!薄皩W(xué)習(xí)結(jié)構(gòu)就是學(xué)習(xí)事物是怎樣相互關(guān)聯(lián)的?!睌?shù)學(xué)思想與方法為數(shù)學(xué)學(xué)科的一般原理的重要組成部分。下面從布魯納的基本結(jié)構(gòu)學(xué)說(shuō)中來(lái)看數(shù)學(xué)思想、方法教學(xué)所具有的重要意義。第一,“懂得基本原理使得學(xué)科更容易理解”。心理學(xué)認(rèn)為“由于認(rèn)知結(jié)構(gòu)中原有的有關(guān)觀念在包攝和概括水平上高于新學(xué)習(xí)的知識(shí),因而新知識(shí)與舊知識(shí)所構(gòu)成的這種類(lèi)屬關(guān)系又可稱(chēng)為下位關(guān)系,這種學(xué)習(xí)便稱(chēng)為下位學(xué)習(xí)?!碑?dāng)學(xué)生掌握了一些數(shù)學(xué)思想、方法,再去學(xué)習(xí)相關(guān)的數(shù)學(xué)知識(shí),就屬于下位學(xué)習(xí)了。下位學(xué)習(xí)所學(xué)知識(shí)“具有足夠的穩(wěn)定性,有利于牢固地固定新學(xué)習(xí)的意義,”即使新知識(shí)能夠較順利地納入到學(xué)生已有的認(rèn)知結(jié)構(gòu)中去。學(xué)生學(xué)習(xí)了數(shù)學(xué)思想、方法就能夠更好地理解和掌握數(shù)學(xué)內(nèi)容。第二,有利于記憶。布魯納認(rèn)為,“除非把一件件事情放進(jìn)構(gòu)造得好的模型里面,否則很快就會(huì)忘記?!薄皩W(xué)習(xí)基本原理
點(diǎn)擊復(fù)制文檔內(nèi)容
環(huán)評(píng)公示相關(guān)推薦
文庫(kù)吧 www.dybbs8.com
備案圖片鄂ICP備17016276號(hào)-1