【總結】綿陽第一中學教學課件設計:雷均建1.任意角的三角函數(shù)第一課時三角函數(shù)的定義第一章三角函數(shù)綿陽第一中學教學課件設計:雷均建復習回顧:在初中我們是如何定義銳角三角函數(shù)的?OabMPc?sin????cos??tancacb
2025-07-18 08:11
【總結】任意角的三角函數(shù)角的范圍已經(jīng)推廣,那么對任一角是否也能像銳角一樣定義其四種三角函數(shù)呢??我們已經(jīng)學習過銳角三角函數(shù),知道它們都是以銳角為自變量,以比值為函數(shù)值,定義了角的正弦、余弦、正切、余切的三角函數(shù),本節(jié)課我們研究當角是一個任意角時,其三角函數(shù)的定義及其幾何表示.???任意角的三角函數(shù)定義
2025-07-23 04:15
【總結】1.(2017山西省太原市)計算:.答案:答案-1考點:實數(shù)的運算;負整數(shù)指數(shù)冪;特殊角的三角函數(shù)值.20171012112653921498特殊角的三角函數(shù)值的計算計算題基礎知識2017-10-122.(2017四川省自貢市)計算:4sin45°+|﹣2|﹣+()0.答案:考點實數(shù)的運算;
2025-07-25 16:38
【總結】任意角的三角函數(shù)教案(第一課時)一.教材分析三角函數(shù)是函數(shù)的一個基本組成部分,也是一個重要組成部分,在整個高中以至于大學都會經(jīng)常用到三角函數(shù)的知識。初中已經(jīng)學習過銳角的三角函數(shù),教材第一節(jié)學習了任意角的表示方法,這些是學習任意角三角函數(shù)的基礎。本節(jié)課的主要內(nèi)容是:弦、余弦、正切的定義;正弦、余弦、正切函數(shù)的定義域和這三種函數(shù)的值在各個象限的符號
2024-11-22 01:41
【總結】......求銳角三角函數(shù)值的策略求銳角三角函數(shù)值是銳角三角形函數(shù)的重要內(nèi)容,求銳角三角函數(shù)值的方法較多,解決時,要根據(jù)不同的已知條件,選擇靈活的解題方法。一、利用定義求解例1、三角形在正方形網(wǎng)格紙中的位置如圖1所示,則sinα的值是()圖1(A)(B)
2025-06-25 11:58
【總結】三角函數(shù)公式兩角和公式sin(A+B)=sinAcosB+cosAsinBsin(A-B)=sinAcosB-cosAsinBcos(A+B)=cosAcosB-sinAsinBcos(A-B)=cosAcosB+sinAsinBtan(A+B)=tan(A-B)=cot(A+B)=cot(A-B)=倍角公式tan2
2025-07-20 16:04
【總結】三角函數(shù)定義及其三角函數(shù)公式匯總1、勾股定理:直角三角形兩直角邊、的平方和等于斜邊的平方。2、如下圖,在Rt△ABC中,∠C為直角,則∠A的銳角三角函數(shù)為(∠A可換成∠B):定義表達式取值范圍關系正弦(∠A為銳角)余弦(∠A為銳角)正切(∠A為銳角)
2025-07-24 07:31
【總結】初中三角函數(shù)詳細數(shù)值表本篇是關于初中三角函數(shù)的速記與理解,皆來自于課本與網(wǎng)絡,所以免費。歡迎曾經(jīng)與我一樣不理解的初學者觀閱~~~~~本品僅用于學習交流,謝絕轉載。首先,我們先理解基礎概念,如下:SinA=CosA=TanA=CotA=還有一點很重要,0sinA10sinA1
2025-08-05 02:29
【總結】第3課時特殊角的三角函數(shù)值學前溫故新課早知在Rt△ABC中,∠C=90°,我們把∠A的對邊與斜邊的比叫做∠A的,記作sinA,即==;把∠A的鄰邊與斜邊的比叫做∠A的,記作cosA,即cosA==;把∠A的對邊與鄰邊的比叫做
2025-06-17 20:12
【總結】(一)1.2.2同角三角函數(shù)的基本關系(一)【學習要求】1.能通過三角函數(shù)的定義推導出同角三角函數(shù)的基本關系式.2.能運用同角三角函數(shù)的基本關系式進行三角函數(shù)式的求值和計算.本課時欄目開關填一填研一研練一練(一)【學法指導】1.推導和牢記同角三角函數(shù)間的基本
2025-08-05 04:25
【總結】任意角的三角函數(shù)任意角的三角函數(shù)第二課時問題提出α是一個任意角,它的終邊與單位圓交于點P(x,y),角α的三角函數(shù)是怎樣定義的?siny??cosx??cosx??tan(0)yxx???如何?一全正,二正弦,三正切,
2025-10-03 17:18
【總結】任意角的三角函數(shù)任意角的三角函數(shù)第一課時問題提出,具體怎樣理解?(1)角是由平面內(nèi)一條射線繞其端點從一個位置旋轉到另一個位置所組成的圖形.(2)按逆時針方向旋轉形成的角為正角,按順時針方向旋轉形成的角為負角,沒有作任何旋轉形成的角為零角.(3)角
2025-09-18 23:23
【總結】300,450,600角的三角函數(shù)值銳角三角函數(shù)定義回顧與思考1駛向勝利的彼岸bABCa┌csinA和cosB,有什么關系?sinA=cosBsinB=cosA,sincaA?,coscbA?,sincbB?,coscaB?,
2024-11-21 04:44
【總結】12、任意角的三角函數(shù)(1)一、教學內(nèi)容分析:高一年《普通高中課程標準教科書·數(shù)學(必修4)》(人教版A版)第12頁任意角的三角函數(shù)第一課時。本節(jié)課是三角函數(shù)這一章里最重要的一節(jié)課,它是本章的基礎,主要是從通過問題引導學生自主探究任意角的三角函數(shù)的生成過程,從而很好理解任意角的三角函數(shù)的定義。在《課程標準》中:三角函數(shù)是基本初等函數(shù),
2024-11-22 03:03
【總結】九年級數(shù)學(下)第一章直角三角形的邊角關系(2)由三角函數(shù)值求角的度數(shù)?直角三角形兩銳角的關系:兩銳角互余∠A+∠B=900.直角三角形的邊角關系?直角三角形三邊的關系:勾股定理a2+b2=c2.回顧與思考1駛向勝利的彼岸bABCa┌c
2024-11-06 21:31