freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

正弦定理和余弦定理測試卷(編輯修改稿)

2024-10-03 14:27 本頁面
 

【文章內(nèi)容簡介】 ∴sinB=sin(A+60176。)=sinAcos60176。+cosAsin60176。=又∵b=2a∴2RsinB=4RsinA,∴sinB=2sinA例在△ABC中,若tanA︰tanB=a2︰b2,試判斷△ABC的形狀. 分析:三角形分類是按邊或角進行的,所以判定三角形形狀時一般要把條件轉(zhuǎn)化為邊之間關(guān)系或角之間關(guān)系式,從而得到諸如a+b=c,a+bc(銳角三角形),a+b<c(鈍角三角形)或sin(A-B)=0,sinA=sinB,sinC=1或cosC=0等一些等式,進而判定其形狀,但在選擇轉(zhuǎn)化為邊或是角的關(guān)系上,要進行探索.解法一:由同角三角函數(shù)關(guān)系及正弦定理可推得,∵A、B為三角形的內(nèi)角,∴sinA≠0,sinB≠0..∴2A=2B或2A=π-2B,∴A=B或A+B=所以△ABC為等腰三角形或直角三角形.解法二:由已知和正弦定理可得:整理得a-ac+bc-b=0,即(a-b)(a+b-c)=0,于是a=b或a+b-c=0,∴a=b或a+b=c.∴△ABC是等腰三角形或直角三角形.利用正弦定理和余弦定理判定三角形形狀,此類問題主要考查邊角互化、要么同時化邊為角,要么同時化角為邊,然后再找出它們之間的關(guān)系,注意解答問題要周密、嚴謹.例若acosA=bcosB,試判斷△ABC的形狀. 分析:本題既可以利用正弦定理化邊為角,也可以利用余弦定理化角為邊. 解:解法一:由正弦定理得:2RsinAcosA=2RsinBcosB∴sin2A=sin2B∴2A=2B或2A+2B=180176。∴A=B或A+B=90176。故△ABC為等腰三角形或直角三角形解法二:由余弦定理得∴a(b+c-a)=b(a+c-b)∴(a-b)(a+b-c)=0∴a=b或a+b=c故△ABC為等腰三角形或直角三角形.正弦定理,余弦定理與函數(shù)之間的相結(jié)合,注意運用方程的思想.例如圖,設(shè)P是正方形ABCD的一點,點P到頂點A、B、C的距離分別是1,2,3,求正方形的邊長.分析:本題運用方程的思想,列方程求未知數(shù). 解:設(shè)邊長為x(1設(shè)x=t,則1-5)=16t三、難點剖析已知兩邊和其中一邊的對角,解三角形時,將出現(xiàn)無解、一解和兩解的情況,應(yīng)分情況予以討論.下圖即是表示在△ABC中,已知a、b和A時解三角形的各種情況.(1)當A為銳角時(如下圖),(2)當A為直角或鈍角時(如下圖),也可利用正弦定理進行討論.如果sinB1,則問題無解; 如果sinB=1,則問題有一解;如果求出sinB用方程的思想理解和運用余弦定理:當?shù)仁絘2=b2+c2-2bccosA中含有未知數(shù)時,等式便成為方程.式中有四個量,知道任意三個,便可以解出另一個,運用此式可以求a或b或c或cosA.向量方法證明三角形中的射影定理在△ABC中,設(shè)三內(nèi)角A、B、C的對邊分別是a、b、c.正弦定理解三角形可解決的類型:(1)已知兩角和任一邊解三角形;(2)已知兩邊和一邊的對角解三角形.余弦定理解三角形可解決的類型:(1)已知三邊解三角形;(2)已知兩邊和夾角解三角形.三角形面積公式:例不解三角形,判斷三角形的個數(shù). ①a=5,b=4,A=120176。 ②a=30,b=30,A=50176。 ③a=7,b=14,A=30176。 ④a=9,b=10,A=60176。 ⑤a=6,b=9,A=45176。 ⑥c=50,b=72,C=135176。 解析:①ab,A=120176。,∴△ABC有一解.②a=b,A=50176。③a④a0 ∴△ABC有兩解.⑤bc,C=45176。,∴△ABC無解(不存在).⑥bc,C=135176。90176。,又由bc知∠B∠C=135176。,這樣B+C180176。,∴△ABC無解.第三篇:正弦定理余弦定理練習正弦定理和余弦定理練習
點擊復制文檔內(nèi)容
化學相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖片鄂ICP備17016276號-1