【總結(jié)】中心對(duì)稱圖形義務(wù)教育課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書九年級(jí)上冊(cè)一教材的地位與作用這一節(jié)課與圖形的三種運(yùn)動(dòng)(平移、翻折、旋轉(zhuǎn))之一的“旋轉(zhuǎn)”有著不可分割的聯(lián)系,通過對(duì)這一節(jié)課的學(xué)習(xí),既可以讓學(xué)生認(rèn)識(shí)圖形的三種基本運(yùn)動(dòng)中“旋轉(zhuǎn)”在幾何知識(shí)中的重要體現(xiàn),同時(shí)也完善了初中部分對(duì)“對(duì)稱圖形”(軸對(duì)稱圖形、中心對(duì)稱圖形)的知識(shí)講授,
2025-07-18 07:20
【總結(jié)】中心對(duì)稱圖形(1)觀察下列圖形看看它們有沒有共同的特征?(2)你能將下圖中的“風(fēng)車”繞其上的一點(diǎn)旋轉(zhuǎn)180度,使旋轉(zhuǎn)前后的圖形完全重合嗎?正六邊形呢?A上圖繞中心旋轉(zhuǎn)180度與原圖重合中心對(duì)稱圖形的定義?在平面內(nèi),一個(gè)圖形繞某個(gè)點(diǎn)旋轉(zhuǎn)180度,如果旋轉(zhuǎn)前后的圖形相互重合,那么這個(gè)圖形叫做中心對(duì)稱圖形。這個(gè)點(diǎn)叫做
2025-07-23 03:41
【總結(jié)】中心對(duì)稱(第1課時(shí))九年級(jí)上冊(cè)1、回憶什么是軸對(duì)稱?成軸對(duì)稱的兩個(gè)圖形有什么性質(zhì)??如果一個(gè)圖形沿著對(duì)折后能與?重合,則稱這兩個(gè)圖形關(guān)于這條直線對(duì)稱或軸對(duì)稱。?成軸對(duì)稱的圖形,它們的對(duì)應(yīng)點(diǎn)的連線被對(duì)稱軸
2024-11-30 14:19
【總結(jié)】初中數(shù)學(xué)八年級(jí)上冊(cè)(蘇科版)(2)思考⑴軸對(duì)稱與軸對(duì)稱圖形有怎樣的聯(lián)系與區(qū)別?⑵比照軸對(duì)稱與軸對(duì)稱圖形的關(guān)系,你認(rèn)為什么樣的圖形是中心對(duì)稱圖形?你對(duì)線段有哪些認(rèn)識(shí)?AB線段旋轉(zhuǎn)ADBC平旋轉(zhuǎn)你對(duì)平行四邊形有哪些認(rèn)識(shí)?把一個(gè)平面圖形繞某一點(diǎn)旋轉(zhuǎn)1800,如果它能夠
2024-11-30 03:54
【總結(jié)】平面內(nèi),一個(gè)圖形繞某個(gè)點(diǎn)旋轉(zhuǎn)180o,如果旋轉(zhuǎn)前后的圖形互相重合,那么這個(gè)圖形叫做中心對(duì)稱圖形,這個(gè)點(diǎn)在叫做它的對(duì)稱中心。中心對(duì)稱圖形性質(zhì):對(duì)稱中心是對(duì)應(yīng)點(diǎn)連線的中點(diǎn)想一想下面哪些圖形是中心對(duì)稱圖形?o(2)圓(1)正三角形(4)等腰梯形(3)平行四邊形(1)正三角形(
2025-11-01 05:31
【總結(jié)】制作:灘頭中心學(xué)校賀東華主講:賀東華中心對(duì)稱圖形:在平面內(nèi),如果一個(gè)圖形繞某一個(gè)點(diǎn)旋轉(zhuǎn)180度,所得圖形的像與原來的圖形互相重合,那么這個(gè)圖形叫做中心對(duì)稱圖形。這個(gè)點(diǎn)叫做對(duì)稱中心.下面圖形哪些是中心對(duì)稱圖形:線段等腰三角形正方形長(zhǎng)方形對(duì)稱中心對(duì)稱中心
2025-11-18 23:44
【總結(jié)】風(fēng)車是我們小時(shí)候常見的玩具請(qǐng)觀察下面的圖形是不是我們以前學(xué)過的軸對(duì)稱圖形?若是請(qǐng)畫出它的對(duì)稱軸.它是軸對(duì)稱圖形嗎?問題:這幅圖片是否能夠通過某種圖形運(yùn)動(dòng)與自身重合呢?如圖1,點(diǎn)O是正三角形ABC的兩條高線的交點(diǎn),以點(diǎn)O為旋轉(zhuǎn)中心,把三角形逆時(shí)針旋轉(zhuǎn)180°,作出所得的像.如圖
2024-12-08 05:03
【總結(jié)】中心對(duì)稱一個(gè)圖形沿著一條直線對(duì)折后兩部分完全重合,這個(gè)的圖形叫做軸對(duì)稱圖形。一個(gè)圖形繞中心點(diǎn)旋轉(zhuǎn)一定的角度后能與自身重合,這個(gè)圖形叫做旋轉(zhuǎn)對(duì)稱圖形。等腰三角形(1)它們分別旋轉(zhuǎn)多少度后才和原圖形完全重合?90°180°270°60°120°180°240
2025-11-09 07:05
【總結(jié)】LQ@LQZXLQ@LQZX一起欣賞?下面三張剪紙臉譜中,有一張與另外兩張?jiān)谀骋环矫嬗胁煌?,你知道是哪一張嗎?LQ@LQZX一起欣賞?下面兩張剪紙中,又有什么不同的地方?LQ@LQZX合作學(xué)習(xí)?如圖1,點(diǎn)O是正三角形ABC的兩條高線的交點(diǎn),以點(diǎn)O為旋轉(zhuǎn)中心,把三角形順時(shí)針旋轉(zhuǎn)1
2025-04-28 22:13
【總結(jié)】中心對(duì)稱與中心對(duì)稱圖形中心對(duì)稱與中心對(duì)稱圖形(第1課時(shí))【教學(xué)目標(biāo)】經(jīng)歷觀察.操作.分析等數(shù)學(xué)活動(dòng)過程,通過具體實(shí)例認(rèn)識(shí)中心對(duì)稱,知道中心對(duì)稱的性質(zhì).【教學(xué)重點(diǎn)】⒈中心對(duì)稱的涵義⒉中心對(duì)稱的性質(zhì).⒊成中心對(duì)稱的圖形的畫法【教學(xué)難點(diǎn)】⒈中心對(duì)稱的性質(zhì).⒉成中心對(duì)稱的圖形的畫法【設(shè)計(jì)
2024-12-08 21:14
【總結(jié)】第2課時(shí)中心對(duì)稱與中心對(duì)稱圖形滬科版九年級(jí)下冊(cè)狀元成才路新課導(dǎo)入問題1:把圖中三角形繞定點(diǎn)O旋轉(zhuǎn)180°,你有什么發(fā)現(xiàn)?ABCO180°狀元成才路問題2:如圖,線段AC、BD相交于點(diǎn)O,OA=OC,
2025-03-12 21:17
【總結(jié)】請(qǐng)觀察下面的圖形是不是我們以前學(xué)過的軸對(duì)稱圖形?若是請(qǐng)畫出它的對(duì)稱軸.欣賞圖片,尋找其共同點(diǎn)在實(shí)際生活中,不僅有折疊、還有旋轉(zhuǎn),以上圖形旋轉(zhuǎn)180°后,都能轉(zhuǎn)到與它相對(duì)的位置上,并且與原來的圖互相重合。(1)把其中一個(gè)圖案繞點(diǎn)O旋轉(zhuǎn)180°,你有什么發(fā)現(xiàn)?重合重合觀察
2024-12-08 04:01
【總結(jié)】(1)這些物體的形狀有什么共同特點(diǎn)?都是四邊形(2)四邊形有什么共同特點(diǎn)?(3)你能給四邊形下一個(gè)確切的定義嗎?在平面內(nèi),由不在同一條直線上的四條線段首尾順次相接組成的圖形叫做四邊形.ABCD如圖所示組成四邊形的各條線段叫做四邊形的邊每相鄰兩條邊的公
2025-11-10 06:23
【總結(jié)】中心對(duì)稱與中心對(duì)稱圖形小雄中學(xué)數(shù)學(xué)組張安明一.知識(shí)回顧:把一個(gè)圖形繞著某一點(diǎn)旋轉(zhuǎn)1800,如果它能與另一個(gè)圖形重合,就說這兩個(gè)圖形關(guān)于這個(gè)點(diǎn)對(duì)稱或中心對(duì)稱.2.中心對(duì)稱的性質(zhì):⑴關(guān)于中心對(duì)稱的兩個(gè)圖形是全等形⑵關(guān)于中心對(duì)稱的兩個(gè)圖形,對(duì)稱點(diǎn)連線都經(jīng)過對(duì)稱中
2025-11-03 17:37
【總結(jié)】第32講┃軸對(duì)稱與中心對(duì)第32講┃考點(diǎn)聚焦考點(diǎn)聚焦考點(diǎn)1軸對(duì)稱與軸對(duì)稱圖形軸對(duì)稱軸對(duì)稱圖形定義把一個(gè)圖形沿著某一條直線折疊,如果它能夠與另一個(gè)圖形____,那么就說這兩個(gè)圖形關(guān)于這條直線對(duì)稱,這條直線叫做對(duì)稱軸.折疊后重合的點(diǎn)是對(duì)應(yīng)點(diǎn),叫對(duì)稱點(diǎn)如果一個(gè)圖形沿某一直線對(duì)折后
2025-01-15 13:20