【總結(jié)】排列的應(yīng)用(二)2022年8月22日8時(shí)16分--有條件的排列問題復(fù)習(xí)與練習(xí))!(!)1()2)(1(mnnmnnnnAmn????????1)由數(shù)字1,2,3,4,5組成沒有重復(fù)數(shù)字的五位數(shù),其中偶數(shù)共有個(gè)。2)用0,1,2,3,4,5組成沒有重復(fù)
2025-08-04 16:52
【總結(jié)】排列與組合中的組合1.選擇題:(1)3名醫(yī)生和6名護(hù)士被分配到3所學(xué)校為學(xué)生體檢,每校分配1名醫(yī)生和2名護(hù)士,不同的分配方法共有()A.90種B.180種C.270種D.540種(2)若等于則組合數(shù)mnCmn,?()A.!nP
2024-11-12 05:25
【總結(jié)】排列與組合、二項(xiàng)式定理的應(yīng)用第一課時(shí):排列與組合第一課時(shí):排列與組合[課前導(dǎo)引]第一課時(shí):排列與組合[課前導(dǎo)引]1.從正方體的6個(gè)面中選取3個(gè)面,其中有兩個(gè)面不相鄰的選法共有()A.8種B.12種C.16種
2024-11-19 03:00
【總結(jié)】排列,組合問題的解答策略第四節(jié)相鄰問題捆綁法?例13:6名同學(xué)排成一排,其中甲,乙兩人必須排在一起的不同排法有多少種??例14:從單詞“equation”中選取5個(gè)不同的字母排成一排,含有“qu”(其中“qu”的相連且順序不變)的不同排列共有多少個(gè)??例15:計(jì)劃在某畫廊展開10幅不同的畫,
2024-11-10 22:56
【總結(jié)】解排列組合的問題一般的思考過程如下:元素放進(jìn)位置(1)弄清楚要做什么事.(2)怎么做才能完要做的事.(熟悉兩個(gè)計(jì)數(shù)原理)即采取分步還是分類,或分步分類同時(shí)進(jìn)行。(3)確定每一類或每一步是有序(排列)還是無序(組合)問題。元素總數(shù)多少,取多少個(gè)元素。(4)掌握一些常用的解題策略。常用的解題策略
2025-08-15 23:54
【總結(jié)】例1:7種不同的花種在排成一列的花盆里,若兩種葵花不種在中間,也不種在兩端的花盆中,問有多少不同的種法?例2:要排一個(gè)有5個(gè)獨(dú)唱節(jié)目和3個(gè)舞蹈節(jié)目的節(jié)目單,如果舞蹈節(jié)目不排頭,并且任何2個(gè)舞蹈節(jié)目不連排,則不同的排法有幾種?小結(jié):當(dāng)排列或組合問題中,若某些元素或某些位置有特殊要求的時(shí)候,那么,一般先按排這些特殊元素或位置,然后再
2025-08-05 19:14
【總結(jié)】;能運(yùn)用解題策略解決簡單的綜合應(yīng)用題。提高學(xué)生解決問題分析問題的能力合問題.教學(xué)目標(biāo)計(jì)數(shù)原理。完成一件事,有n類辦法,在第1類辦法中有m1種不同的方法,在第2類辦法中有m2種不同的方法,…,在第n類辦法中有mn種不同的方法,那么完成這件事共有:種不同的方法.
2025-10-31 13:22
【總結(jié)】1第十章排列、組合、二項(xiàng)式定理和概率第講(第一課時(shí))2考點(diǎn)搜索●排列、排列數(shù)的概念,排列數(shù)的計(jì)算公式●組合、組合數(shù)的概念,組合數(shù)的計(jì)算公式3高考猜想、組合原理解決實(shí)際應(yīng)用問題,并以小題形式進(jìn)行命題.、組合知識(shí),解決某些計(jì)數(shù)問題.
2025-08-11 14:46
【總結(jié)】排列組合教材分析四色問題?任意一張地圖,用一種顏色對一個(gè)地區(qū)著色,那么一共只需要四種顏色就能保證每兩個(gè)相鄰的地區(qū)顏色不同。穩(wěn)定的婚姻問題?如果一個(gè)村子里每一個(gè)女孩都恰好認(rèn)識(shí)k個(gè)男孩,并且每一個(gè)男孩也恰好認(rèn)識(shí)k個(gè)女孩,那么每一個(gè)女孩都可以嫁給她認(rèn)識(shí)的一個(gè)男孩,并且每一個(gè)男孩都可以娶一個(gè)他認(rèn)識(shí)的女孩.穩(wěn)定的婚姻問題?但是
2025-08-15 22:11
【總結(jié)】數(shù)學(xué)廣角排列組合嘉峪關(guān)市新城中心小學(xué):贠吉芳?一、教學(xué)內(nèi)容?課本第99頁知識(shí)?二、教學(xué)目標(biāo)?1、通過觀察、猜測、操作等活動(dòng)吧,學(xué)會(huì)最簡單的排列和組合。?2、經(jīng)歷探索簡單事物的排列和組合規(guī)律的過程。?3、培養(yǎng)血紅色呢過有順序地全面地思考問題的意識(shí)。?4、感受數(shù)學(xué)與生活的緊密聯(lián)系,激發(fā)學(xué)生
2025-07-19 17:40
【總結(jié)】│排列、組合│知識(shí)梳理知識(shí)梳理1.排列(1)定義:從n個(gè)不同元素中任取m(m≤n)個(gè)元素,排成一列,叫做從n個(gè)不同元素中取出m個(gè)元素的一個(gè)排列.(2)排列數(shù)定義:從n個(gè)不同元素中取出m(m≤n)個(gè)元素的的個(gè)數(shù),叫做從
2025-08-05 07:24
【總結(jié)】排列與組合2021信息學(xué)奧賽問題求解專題例1從甲地到乙地,可以乘火車,也可以乘汽車,還可以乘輪船。一天中,火車有4班,汽車有2班,輪船有3班。那麼,一天中乘坐這些交通工具從甲地到乙地共有多少種不同的走法?解:因?yàn)橐惶熘谐嘶疖囉?/span>
2025-10-25 22:00
【總結(jié)】排列組合應(yīng)用題的解題策略河北徐水綜合高中張占江郵編072550@排列組合問題是高考的必考題,它聯(lián)系實(shí)際生動(dòng)有趣,但題型多樣,思路靈活,不易掌握,實(shí)踐證明,掌握題型和解題方法,識(shí)別模式,熟練運(yùn)用,是解決排列組合應(yīng)用題的有效途徑;下面就談一談排列組合應(yīng)用題的解題策略。1、相鄰問題捆綁法。題目中規(guī)定相鄰的幾個(gè)元素捆綁成一個(gè)組,當(dāng)作一個(gè)大元素參與排列。例1:五
2025-06-07 19:47
【總結(jié)】問題1把a(bǔ)bcd平均分成兩組有_____多少種分法?結(jié)論:平均分成的組,不管它們的順序如何,都是一種情況,所以分組后要除以,即m!,其中m表示組數(shù)。abcdacbdadbccdbdbcadacab這兩個(gè)在分組時(shí)只能算一個(gè)mmA均分不安排工作的問題例1:12本不
【總結(jié)】例1,7名學(xué)生站成一排,甲已必須站在一起,有多少種方法?捆綁法:要求某幾個(gè)元素必須排在一起的問題,可以用捆綁法來解決問題。即將需要相鄰的元素合并為一個(gè)元素,再與其他元素一起作排列,同時(shí)要注意合并元素內(nèi)部也可以做排列。一般地:n個(gè)人站成一排,其中某m個(gè)人相鄰,可用“捆綁法”解決,共有種排法插入法:對