【總結】二次函數(shù)的圖象和性質二次函數(shù)倍速課時學練如圖:正方體的六個面全是全等的正方形如圖,設正方體的棱長為x,表面積為y.y=6x2①顯然對于x的每一個值,y都有一個對應值,即y是x的函數(shù),它們具體的關系可以表示為倍速課時學練問題1多邊形的對角線數(shù)d與邊數(shù)n
2024-11-22 02:31
【總結】......專題講解——二次函數(shù)的圖象知識點回顧:1.二次函數(shù)解析式的幾種形式:①一般式:(a、b、c為常數(shù),a≠0)②頂點式:(a、h、k為常數(shù),a≠0),其中(h,k)為頂點坐標。③交點式:,其中是拋
2025-03-24 06:25
【總結】二次函數(shù)的圖像【學習目標】1、會做函數(shù)y=ax2和y=ax2+c的圖象,并能比較它們的異同;理解a,c對二次函數(shù)圖象的影響,能正確說出兩函數(shù)的開口方向,對稱軸和頂點坐標;2、了解拋物線y=ax2上下平移規(guī)律;3、熟練掌握二次函數(shù)的性質;4、應用二次函數(shù)解決實際問題?!局饕拍睢俊?】二次函數(shù)的圖像二次函數(shù)的圖像是一條關于對稱的曲線
2025-05-16 02:58
【總結】4-22246-4810-2y=x2+1y=x2-1y=ax2(a≠0)a0a0圖象開口方向頂點坐標對稱軸增減性最值xyOyxO向上向下(0,0)(0,0)y軸
2024-11-22 02:30
【總結】§復習目標1.掌握一元二次函數(shù)圖象的畫法及圖象的特征2.掌握一元二次函數(shù)的性質,能利用性質解決實際問題3.會求二次函數(shù)在指定區(qū)間上的最大(?。┲?.掌握一元二次函數(shù)、一元二次方程的關系。知識回顧1.函數(shù)叫做一元二次函數(shù)。2.一元二次函數(shù)的圖象是一條拋物線。3.任何一個二次函數(shù)都可把它的解析式配方為頂點式:,性質如下:(1)圖象的頂
2025-05-15 23:30
【總結】知識框架一、二次函數(shù)的基本形式1.二次函數(shù)基本形式:的性質:2.的性質3.的性質:4.的性質:二、二次函數(shù)圖象的平移三、二次函數(shù)與的比較四、二次函數(shù)圖象的畫法五、二次函數(shù)的性質六、二次函數(shù)解析式的表示方法七、二次函數(shù)的圖象與各項系數(shù)之間的關系八、二次函數(shù)圖象的對稱九、二次函數(shù)與一元二次方程:考點一:二次函數(shù)的定義相關典型例題
2025-04-04 04:24
【總結】《二次函數(shù)y=ax2的圖象和性質》教學設計臨高縣皇桐中學周小花一、教學內容分析二次函數(shù)y=ax2的圖像和性質是人教版九年級數(shù)學上冊第二十二章第一節(jié)第二課時的內容,是在學生學習了二次函數(shù)的基本概念之后引入的新內容,也是后面研究坐標形式和一般形式的二次函數(shù)圖像性質的基礎。所以,學習本節(jié)內容我們既要對前段的內容進行升華,又要對后段內容進行啟發(fā)。?二、教學對象分析九年
2025-04-16 13:36
【總結】二次函數(shù)圖象專題訓練1.二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,下列結論①a、b異號;②當x=1和x=3時,函數(shù)值相等;③4a+b=0,④當y=4時,x的取值只能為0.結論正確的個數(shù)有()個A.1 ?。拢? C.3 ?。模?yxO2、已知二次函數(shù)()的圖象如圖所示,有下列結論:①;②;③;④.其中,正
2025-06-23 13:54
【總結】各類二次函數(shù)的圖像與性質復習課都川中學王建鋒y=ax2a0a0圖象開口對稱軸頂點增減性二次函數(shù)y=ax2的性質開口向上開口向下a的絕對值越大,開口越小y軸頂點坐標是原點(0,0)頂點是最低點頂點是最高點在對稱軸左側遞減
2024-11-22 00:04
【總結】二次函數(shù)y=ax2+bx+c圖象和性質(4)xyoy=ax2y=ax2+ky=a(x–h)2y=a(x–h)2+k上下平移左右平移上下平移左右平移在上述移動中圖象的開口方向、形狀、頂點坐標、對稱軸,哪些有變化?哪些沒有變化?有變化的:拋
2024-11-20 23:47
【總結】 《二次函數(shù)圖像的性質》聽課反思 預備鈴響之前我到達了十二班,劉瓊老師正在黑板上畫直角坐標系,學生在預習,班里整體上處于上課的狀態(tài)...... 首先出示了學習目標:=x2的圖像是一...
2025-04-03 05:08
【總結】§4二次函數(shù)性質的再研究4.1二次函數(shù)的圖像學習導航學習目標重點難點重點:二次函數(shù)圖像變換及求解析式.難點:對圖像變換的理解及圖像的應用.新知初探·思維啟動1.二次函數(shù)的定義及解析式(1)二次函數(shù)的概念函數(shù)__________________
2024-11-09 02:28
【總結】二次函數(shù)的圖像與性質(一)第二十四講,求二次函數(shù)的解析式:⑴已知拋物線的頂點坐標為(-1,-2),且通過點(1,10).⑵已知拋物線經(jīng)過(2,0),(0,-2),(-2,3)三點.⑶已知拋物線與x軸交點的橫坐標為-2和1,且通過點(2,8).Oy-11x2、已知二次函數(shù)y=
2024-11-19 08:00
【總結】二次函數(shù)的圖像與性質一、二次函數(shù)的基本形式1.二次函數(shù)基本形式:的性質:a的絕對值越大,拋物線的開口越小。的符號開口方向頂點坐標對稱軸性質向上軸時,隨的增大而增大;時,隨的增大而減?。粫r,有最小值.向下軸時,隨的增大而減??;時,隨的增大而增大;時,有最大值.2.的性質:上加下減
2025-06-16 00:11
【總結】二次函數(shù)y=ax2的圖象和性質xy一.平面直角坐標系:1.有關概念:x(橫軸)y(縱軸)o第一象限第二象限第三象限第四象限Pab(a,b)2.平面內點的坐標:3.坐標平面內的點與有序實數(shù)對是:一一對應.坐標平面內的任意一點M,都有
2024-11-21 23:43