【總結(jié)】復(fù)習(xí):1,00nnnnaaqnNqaa???????⑴{}成等比數(shù)列()(2)通項公式:)0(111?????qaqaann)0(1?????qaqaamnmn國際象棋盤內(nèi)麥子數(shù)“爆炸”傳說西塔發(fā)明了國際象棋而使國王十分高興,他決定要重賞西塔,西塔說:“
2024-11-17 19:35
【總結(jié)】等比數(shù)列的前n項和(一)自主學(xué)習(xí)知識梳理1.等比數(shù)列前n項和公式(1)公式:Sn=?????=?q≠1??q=1?.(2)注意:應(yīng)用該公式時,一定不要忽略q=1的情況.2.等比數(shù)列前n項和的一個常用性質(zhì)在等比數(shù)列中,若等比數(shù)
2024-12-05 06:40
【總結(jié)】等比數(shù)列的前n項和(二)自主學(xué)習(xí)知識梳理1.等比數(shù)列{an}的前n項和為Sn,當(dāng)公比q≠1時,Sn=________________=____________;當(dāng)q=1時,Sn=________.2.等比數(shù)列前n項和的性質(zhì)(1)連續(xù)m項的和(如Sm、S2m-Sm、S3m-S2m),仍
2024-12-05 01:51
【總結(jié)】等差數(shù)列的公差:等差數(shù)列的通項公式:等差數(shù)列的定義:知識回顧:等差數(shù)列的通項公式是如何推導(dǎo)?觀察思考:以下幾個數(shù)列有何共同特點?(1)2,4,8,16,…(2)2,2,4,4…22(4)5,5,5,5,…(3)1,,,,…
2024-11-18 08:48
【總結(jié)】課題:等差數(shù)列的通項公式班級:姓名:學(xué)號:第學(xué)習(xí)小組【學(xué)習(xí)目標(biāo)】:1、會用“疊加法”求等差數(shù)列通項公式;2、會用等差數(shù)列通項公式解決一些簡單問題?!菊n前預(yù)習(xí)】??na,4,7,10,13,16,?,則100a=,猜想na=
2024-11-20 01:05
【總結(jié)】等比數(shù)列的通項公式(教案)一、教學(xué)目標(biāo)1、掌握等比數(shù)列的通項公式,并能夠用公式解決一些相關(guān)問題。2、掌握由等比數(shù)列的通項公式推導(dǎo)出的相關(guān)結(jié)論。二、教學(xué)重點、難點各種結(jié)論的推導(dǎo)、理解、應(yīng)用。三、教學(xué)過程1、導(dǎo)入復(fù)習(xí)等比數(shù)列的定義:通項公式:用歸納猜測的方法得到,用累積法證明2、新知探索例1在等比數(shù)列中,(1)
2025-04-17 08:21
【總結(jié)】第9課時:§等比數(shù)列(3)【三維目標(biāo)】:一、知識與技能1掌握“錯位相減”的方法推導(dǎo)等比數(shù)列前項和公式;,并能運用公式解決簡單的實際問題;二、過程與方法,提高學(xué)生的建模意識及探究問題、分析與解決問題的能力,體會公式探求過程中從特殊到一般的思維方法,滲透方程思想、分類討論思想及轉(zhuǎn)化思想,優(yōu)化思維品質(zhì).“錯位相減法”這種算法中,體會“消除差
2025-06-07 23:07
【總結(jié)】生活中的數(shù)列1.放射性物質(zhì)鐳的半衰期為1620年,如果從現(xiàn)有的10克鐳開始,每隔1620年,剩余量依次為10000×,10000×,10000×,…10000×2.某人年初投資10000元,如果年收益率為5%,那么按照復(fù)利,5年內(nèi)各年末的本利和依次為
2025-05-12 21:08
【總結(jié)】陜西省咸陽市涇陽縣云陽中學(xué)高中數(shù)學(xué)等比數(shù)列導(dǎo)學(xué)案北師大版必修5【學(xué)習(xí)目標(biāo)】,通過類比的方法復(fù)述等比數(shù)列的定義;2.利用上述的定義、公式能判斷一個數(shù)列是否為等比數(shù)列,并能確定其公比;,能類比等差數(shù)列通項公式的推導(dǎo)方法推導(dǎo)等比數(shù)列的通項公式?!緦W(xué)習(xí)重點】等比數(shù)列的定義和通項公式。【學(xué)法指導(dǎo)】
2024-11-27 22:09
【總結(jié)】§等比數(shù)列2.等比數(shù)列自主學(xué)習(xí)知識梳理1.如果一個數(shù)列從第________項起,每一項與它的前一項的________都等于同一個常數(shù),那么這個數(shù)列叫做等比數(shù)列.這個常數(shù)叫做等比數(shù)列的________,通常用字母q表示(q≠0).2.等比數(shù)列的通項公式:____________.3.等
2024-11-19 23:20
【總結(jié)】等比數(shù)列的通項公式(2)陽光國際學(xué)校高中部數(shù)學(xué)組復(fù)習(xí)一.等比數(shù)列的定義二.等比數(shù)列的通項公式an=a1qn-1q0時,數(shù)列各項同號q0時,數(shù)列各項正負(fù)相間①{an}是等比數(shù)列?=q(q是常數(shù),n∈N*
2024-11-12 16:41
【總結(jié)】等比數(shù)列的前n項和(1)教學(xué)目標(biāo):等比數(shù)列前n項和公式及其獲取思路,會用等比數(shù)列的前n項和公式解決簡單的與前n項和有關(guān)的問題.2.提高學(xué)生的推理能力,培養(yǎng)學(xué)生應(yīng)用意識.教學(xué)重點:等比數(shù)列前n項和公式的理解、推導(dǎo)及應(yīng)用.教學(xué)難點:應(yīng)用等差數(shù)列前n項和公式解決一些簡單的有關(guān)問題.
2024-12-05 10:13
【總結(jié)】等比數(shù)列的前n項和(2)教學(xué)目標(biāo):1.掌握等比數(shù)列前n項和公式.2.綜合運用等比數(shù)列的定義、通項公式、性質(zhì)、前n項和公式解決相關(guān)的問題.教學(xué)重點:進(jìn)一步熟悉掌握等比數(shù)列的通項公式和前n項和公式的理解、推導(dǎo)及應(yīng)用.教學(xué)難點:靈活應(yīng)用相關(guān)知識解決有關(guān)問題.教學(xué)方法:采用啟發(fā)式、討
【總結(jié)】等比數(shù)列的前n項和(二)課時目標(biāo)n項和公式的有關(guān)性質(zhì)解題.n項和公式解決實際問題.1.等比數(shù)列{an}的前n項和為Sn,當(dāng)公比q≠1時,Sn=______________=_____;當(dāng)q=1時,Sn=____________.2.等比數(shù)列前n項和的性質(zhì):(1)連續(xù)m項的和(如Sm、S
【總結(jié)】問題探究????。的通項公式試求數(shù)列,)(滿足:已知數(shù)列 探究nnnnnaanaaaa1211111?????????????。的通項公式),試求數(shù)列(已知,且中,:已知數(shù)列 探究nnnnnaaqqaaaa
2025-03-12 14:53