【總結(jié)】雙基限時(shí)練(二十)向量平行的坐標(biāo)表示一、選擇題1.已知a=(-1,2),b=(2,y),若a∥b,則y的值是()A.1B.-1C.4D.-4解析由a∥b,得(-1)·y=2·2=4,∴y=-4,故選D.答案D2.已知A(k,1
2024-12-04 23:45
【總結(jié)】雙基限時(shí)練(二十一)從力做的功到向量的數(shù)量積一、選擇題1.下列命題①a+(-a)=0;②(a+b)+c=a+(b+c);③(a2b)2c=a2(b2c);④(a+b)2c=a2c+b2()A.0個(gè)B.
2024-12-04 20:39
【總結(jié)】【金榜教程】2021年高中數(shù)學(xué)試題北師大版必修4(30分鐘50分)一、選擇題(每小題4分,共16分)1.(2021·寶雞高二檢測)已知a=(a,1),b=(1,b),若ab?,則a,b符合的關(guān)系為()(A)a-b=0(B)a+b=0(C)ab-1=0(D)ab+1=
2024-11-30 23:41
【總結(jié)】平面向量的線性運(yùn)算例1一輛汽車從A點(diǎn)出發(fā)向西行駛了100公里到達(dá)B點(diǎn),然后又改變方向向西偏北050走了200公里到達(dá)C點(diǎn),最后又改變方向,向東行駛了100公里到達(dá)D點(diǎn)。(1)作出向量AB,BC,CD;(2)求AD。分析:解答本題應(yīng)首先確立指向標(biāo),然后再根據(jù)行駛方向確定出有關(guān)向量,進(jìn)而求解。解析:(
2024-12-05 06:40
【總結(jié)】平面向量數(shù)量積四大考點(diǎn)解析考點(diǎn)一.考查概念型問題例a、b、c是三個(gè)非零向量,則下列命題中真命題的個(gè)數(shù)()⑴??baab?ba//?;⑵ba,反向????baab?⑶??bababa???;⑷a=b???bacb?分析
2024-11-19 23:18
【總結(jié)】平面向量的坐標(biāo)運(yùn)算學(xué)習(xí)了向量的坐標(biāo)表示后,我們可以把向量運(yùn)算代數(shù)化.將數(shù)與形緊密結(jié)合起來,從而使許多問題轉(zhuǎn)化為我們熟知的數(shù)量運(yùn)算,使問題得以簡化.下面舉例說明平面向量的坐標(biāo)運(yùn)算在解幾類題中的應(yīng)用.一、兩向量相等問題例1已知向量?u(),xy和向量v(2)??,yyx的對應(yīng)關(guān)系可用v?f()u表示,求證:對任意向量,ab
2024-12-05 06:36
【總結(jié)】階段性檢測卷(二)(時(shí)間:120分鐘滿分:150分)一、選擇題(本大題共有10個(gè)小題,每小題5分,共50分)→+AC→-BC→+BA→,化簡后等于()A.3AB→→→→解析AB→+AC→-BC→+BA→
2024-12-05 01:55
【總結(jié)】第二章平面向量,第一頁,編輯于星期六:點(diǎn)三十三分。,§2從位移的合成到向量的加法2.2向量的減法,第二頁,編輯于星期六:點(diǎn)三十三分。,,自主學(xué)習(xí)梳理知識,課前基礎(chǔ)梳理,第三頁,編輯于星期六:點(diǎn)三十三分...
2024-10-22 18:50
【總結(jié)】第二章平面向量,第一頁,編輯于星期六:點(diǎn)三十三分。,§2從位移的合成到向量的加法2.1向量的加法,第二頁,編輯于星期六:點(diǎn)三十三分。,,自主學(xué)習(xí)梳理知識,課前基礎(chǔ)梳理,第三頁,編輯于星期六:點(diǎn)三十三分...
2024-10-22 18:49
【總結(jié)】第二章解三角形課標(biāo)要求:本章的中心內(nèi)容是如何解三角形,正弦定理和余弦定理是解三角形的工具,最后落實(shí)在解三角形的應(yīng)用上。通過本章學(xué)習(xí),學(xué)生應(yīng)當(dāng)達(dá)到以下學(xué)習(xí)目標(biāo):(1)通過對任意三角形邊長和角度關(guān)系的探索,掌握正弦定理、余弦定理,并能解決一些簡單的三角形度量問題。(2)能夠熟練運(yùn)用正弦定理、余弦定理等知識和方法解決一些與測量和幾何計(jì)算有關(guān)的生活實(shí)
2024-11-19 08:01
【總結(jié)】循環(huán)語句教學(xué)目標(biāo)(1)正確理解循環(huán)語句的概念,并掌握其結(jié)構(gòu);(2)會(huì)應(yīng)用循環(huán)語句編寫程序.教學(xué)重點(diǎn)兩種循環(huán)語句的表示方法、結(jié)構(gòu)和用法,用循環(huán)語句表示算法.教學(xué)難點(diǎn)理解循環(huán)語句的表示方法、結(jié)構(gòu)和用法,會(huì)編寫程序中的循環(huán)語句.教學(xué)過程一、問題情境1.問題1:設(shè)計(jì)計(jì)算13579
2024-11-19 20:36
【總結(jié)】向量在中學(xué)數(shù)學(xué)中的應(yīng)用由于向量具有幾何形式與代數(shù)形式的“雙重身份”,是中學(xué)數(shù)學(xué)知識的一個(gè)交匯點(diǎn),從而使它成為解決數(shù)學(xué)問題的重要工具.因此,在教學(xué)中除了讓學(xué)生掌握“平面向量”本身的內(nèi)容外,還要重視培養(yǎng)學(xué)生應(yīng)用向量解決其它問題的意識和能力.本文舉例說明向量在中學(xué)數(shù)學(xué)中的應(yīng)用.1在平面幾何中的應(yīng)用例1求證:平面四邊形對角線的平方和
【總結(jié)】平面向量數(shù)量積的應(yīng)用平面向量的數(shù)量積及其性質(zhì)是平面向量的重點(diǎn)內(nèi)容,在平面向量中占重要的地位.利用平面向量的數(shù)量積及其性質(zhì)可以處理向量的許多問題.下面舉例歸納說明.一、求向量的長度(模)求向量的長度的依據(jù)是:①2aaa?·;②設(shè)?a(),xy,則a22??xy.例1已知5ab??,向量a與b的夾角為π3,
【總結(jié)】平面向量的運(yùn)算與應(yīng)用平面向量是數(shù)學(xué)中重要的基本概念之一,向量知識是進(jìn)一步學(xué)習(xí)數(shù)學(xué)、物理及其它科學(xué)的有效工具,尤其是向量加減法,向量的倍積與數(shù)量積的運(yùn)算律在運(yùn)算中扮演著重要角色.一、向量的幾何運(yùn)算向量運(yùn)算有著豐富的幾何背景,三角形法則與平行四邊形法則是向量加減法運(yùn)算的最基本而直觀的運(yùn)算方法.例1已知點(diǎn)G是△ABC的重心,O為平面
2024-11-19 23:17
【總結(jié)】向量在物理中的應(yīng)用舉例向量起源于物理,是從物理學(xué)中抽象出來的數(shù)學(xué)概念.物理學(xué)中的許多問題,如位移、速度、加速度等都可以利用向量來解決.用數(shù)學(xué)知識解決物理問題,首先要把物理問題轉(zhuǎn)化為數(shù)學(xué)問題,即根據(jù)題目的條件建立數(shù)學(xué)模型,再轉(zhuǎn)化為數(shù)學(xué)中的向量運(yùn)算來完成.1.解決力學(xué)問題例1質(zhì)量為m的物體靜止地放在斜面上,斜面與水平面的夾角為?,求斜面對于物體