【總結】復習十二二次函數(shù)應用(二)復習目標:通過復習進一步理解并掌握二次函數(shù)有關性質,提高對二次函數(shù)綜合題的分析和解答的能力.,鉛球飛行時的高度y(m)與水平距離x(m)之間的函數(shù)關系式是y=-x2+x+,則鉛球落地的水平距離為m.115321308米
2024-11-19 12:03
【總結】義務教育課程標準實驗教科書浙江版《數(shù)學》九年級上冊請用適當?shù)暮瘮?shù)解析式表示下列問題情境中的兩個變量y與x之間的關系.(1)圓的面積y(cm2)與圓的半徑x(cm)合作學習:(2)王先生存人銀行2萬元,先存一個一年定期,一年后銀行將本息自動轉存為又一個一年定期,設一年定期的年存款利率為x,兩年后王先生共得本息
2024-11-06 21:13
【總結】二次函數(shù)的應用解決形狀是拋物線的實際問題學以致用復習?求函數(shù)的解析式?1)(2020云南中考試題)已知在同意個直角坐標系中,反比例函數(shù)y=5/X與二次函數(shù)y=-x2+2x+c的圖像交于點A(-1,m)?(1)求m,c的值(2)求二次函數(shù)的對稱軸和頂點坐標。復習解析式的求法?已知二次函數(shù)的頂點是(
2024-11-12 03:30
【總結】數(shù)形結合思想在數(shù)學教學中的如何滲透論文關鍵詞:思維 滲透 數(shù)學思想方法 思維能力 契合點 創(chuàng)新意識 論文摘要:數(shù)學學習離不開思維,數(shù)學探索需要通過思維來實現(xiàn),在初中數(shù)學教學中逐步滲透數(shù)學思想方法,培養(yǎng)思維能力,形成良好的數(shù)學思維習慣,數(shù)形結合的思想貫穿初中數(shù)學教學的始終。數(shù)形結合思想的主要內(nèi)容體現(xiàn)在以下幾個方面:(1)建立適當?shù)拇鷶?shù)模型(主要是方程、不等式或函數(shù)模型),(2)建立幾何
2024-08-26 12:48
2024-11-19 07:59
【總結】九年級數(shù)學(下)第二章二次函數(shù)6.何時獲得最大利潤(1)二次函數(shù)的應用陽泉市義井中學高鐵牛?請你幫助分析:銷售單價是多少時,可以獲利最多?何時獲得最大利潤?某商店經(jīng)營T恤衫,已知成批購進時單價是.根據(jù)市場調查,銷售量與銷售單價滿足如下關系:在某一時間內(nèi),單價是,銷售量是500件,而單價每降低1
2024-11-06 18:08
【總結】精品資源第5講數(shù)形結合思想在解題中的應用一、知識整合1.數(shù)形結合是數(shù)學解題中常用的思想方法,使用數(shù)形結合的方法,很多問題能迎刃而解,且解法簡捷。所謂數(shù)形結合,就是根據(jù)數(shù)與形之間的對應關系,通過數(shù)與形的相互轉化來解決數(shù)學問題的一種重要思想方法。數(shù)形結合思想通過“以形助數(shù),以數(shù)解形”,使復雜問題簡單化,抽象問題具體化能夠變抽象思維為形象思維,有助于把握數(shù)學問題的本質,它是數(shù)學的
2025-03-25 06:53
【總結】第5講數(shù)形結合思想在解題中的應用一、知識整合1.數(shù)形結合是數(shù)學解題中常用的思想方法,使用數(shù)形結合的方法,很多問題能迎刃而解,且解法簡捷。所謂數(shù)形結合,就是根據(jù)數(shù)與形之間的對應關系,通過數(shù)與形的相互轉化來解決數(shù)學問題的一種重要思想方法。數(shù)形結合思想通過“以形助數(shù),以數(shù)解形”,使復雜問題簡單化,抽象問題具體化能夠變抽象思維為形象思維,有助于把握數(shù)學問
2024-12-05 04:02
【總結】二次函數(shù)應用(一)復習十一復習目標:通過復習進一步理解并掌握二次函數(shù)有關性質,提高對二次函數(shù)綜合題的分析和解答的能力.y=x2-2kx+k-1.⑴求證:不論k取何值時,拋物線與x軸必有兩個交點.⑵設拋物線與x軸的兩個交點分別為(x1,0),(x2,0),求x12+x22的最小值.x2-(2k-
【總結】( 2009屆) 本科畢業(yè)設計(論文)題 目: 數(shù)形結合思想及其在教學中的應用 學 院: 數(shù)學與信息工程學院 專 業(yè): 數(shù)學與應用數(shù)學 班 級: 數(shù)學052 學 號: 200549265221 姓 名:
2025-04-27 23:45
【總結】數(shù)形結合思想在解題中的應用知識要點:1.數(shù)形結合是數(shù)學解題中常用的思想方法,數(shù)形結合的思想可以使某些抽象的數(shù)學問題直觀化、生動化,能夠變抽象思維為形象思維,有助于把握數(shù)學問題的本質;另外,由于使用了數(shù)形結合的方法,很多問題便迎刃而解,且解法簡捷。2.所謂數(shù)形結合,就是根據(jù)數(shù)與形之間的對應關系,通過數(shù)與形的相互轉化來解決數(shù)學問題的思想,實現(xiàn)數(shù)形結合,常與以下內(nèi)容有關:(1)實數(shù)
2025-06-07 23:27
【總結】制作人:高安二中熊新成一.復習提問???(1)平行.(2)相交.?注意:重合是平行的特例?垂直是相交的特例???平行k1=k2b1≠b2相交K1≠K2二.兩條直線平行的有關應用例y=2x向上平移2個單位后得到的解析式是什么?向右平移2個單位得到的
2024-11-10 22:55
【總結】例一個球從地面上豎直向上彈起時的速度為10m/s,經(jīng)過t(s)時球的高度為h(m)。已知物體豎直上拋運動中,h=v0t-?gt2(v0表示物體運動上彈開始時的速度,g表示重力系數(shù),取g=10m/s2)。地面問題?,如圖,當球離拋出地的水平距離為30m時,達到最大高
2024-11-27 23:42
【總結】例如在,為了使溫室種植的面積最大,應怎樣確定邊長x的值?在日常生活和生產(chǎn)實際中,二次函數(shù)的性質有著許多應用。例如:如果溫室外圍是一個矩形,周長為120m,室內(nèi)通道的尺寸如圖,設一條邊長為x(cm),種植面積為y(m2)。y=(x-2)(56-x)=-x2+58x-112=-(x-29)2+72
【總結】第一部分常用數(shù)學思想方法專題二數(shù)形結合的思想方法專題概覽……………………………………………(3)模擬訓練……………………………………………(6)規(guī)律總結……………………………………………(20)返回目錄專題概覽“數(shù)”和“形”是數(shù)學研究中既有區(qū)別又有聯(lián)系的兩個對象.“數(shù)
2025-06-19 16:22