【總結(jié)】第一章一、選擇題1.(2021·全國大綱文,2)已知角α的終邊經(jīng)過點(diǎn)(-4,3),則cosα=()A.45B.35C.-35D.-45[答案]D[解析]考查了三角函數(shù)的定義.由條件知:x=-4,y=3,則r=5,∴cosα=xr=-45.2.(20
2024-11-27 23:51
【總結(jié)】三角函數(shù)的圖象與性質(zhì)(2)新授課學(xué)習(xí)目標(biāo)1、借助正弦函數(shù)的圖像,說出正弦函數(shù)的性質(zhì);2、能利用正弦函數(shù)的性質(zhì)解決最值、奇偶性、單調(diào)性、周期性等有關(guān)問題;
2024-11-27 23:47
【總結(jié)】高一數(shù)學(xué)正切函數(shù)的圖像與性質(zhì)林銀玲目標(biāo)1、借助正切函數(shù)的圖像,說出正切函數(shù)的性質(zhì);2、能利用正切函數(shù)的性質(zhì)解決最值、奇偶性、單調(diào)性、周期性等有關(guān)問題;自學(xué)指
2024-11-18 16:46
【總結(jié)】 《任意角的三角函數(shù)》導(dǎo)學(xué)案 【學(xué)習(xí)目標(biāo)】 (1)掌握任意角的正弦、余弦、正切的定義(包括這三種三角函數(shù)的定義域和函數(shù)值在各象限的符號(hào));[來源:Z+xx+] (2)理解任意角的三角函數(shù)不同的...
2025-04-03 03:09
【總結(jié)】正弦型函數(shù)y=Asin(ωx+φ)的圖象(課前預(yù)習(xí)案)班級(jí):___姓名:________編寫:一、新知導(dǎo)學(xué)1、在函數(shù))sin(????tRy中,點(diǎn)P旋轉(zhuǎn)一周所需要的時(shí)間??2?T,叫做點(diǎn)P的______在1秒內(nèi),點(diǎn)P轉(zhuǎn)動(dòng)的周數(shù)??21??Tf,叫做轉(zhuǎn)動(dòng)的______。0
2024-11-18 16:45
【總結(jié)】同角三角函數(shù)的基本關(guān)系式(一)一.學(xué)習(xí)要點(diǎn):同角三角函數(shù)基本關(guān)系式及其簡單應(yīng)用二.學(xué)習(xí)過程:(一)復(fù)習(xí):1.任意角的三角函數(shù)定義:設(shè)角?是一個(gè)任意角,?終邊上任意一點(diǎn)(,)Pxy,它與原點(diǎn)的距離為2222(||||0)rrxyxy?????sin??,cos??
【總結(jié)】同角三角函數(shù)的基本關(guān)系式(二)一.學(xué)習(xí)要點(diǎn):同角三角函數(shù)基本關(guān)系式的應(yīng)用二.學(xué)習(xí)過程:(一)復(fù)習(xí):1.同角三角函數(shù)的基本關(guān)系式
【總結(jié)】同角三角函數(shù)的關(guān)系(2)【學(xué)習(xí)目標(biāo)】1、能用同角三角函數(shù)關(guān)系解決簡單的計(jì)算、化簡與證明2、掌握“知一求二”的問題【重點(diǎn)難點(diǎn)】奇次式的處理方法和“知一求二”的問題【自主學(xué)習(xí)】一、復(fù)習(xí)回顧1、同角三角函數(shù)的兩個(gè)基本關(guān)系式:2、??????cossin,cossin,c
2024-12-05 10:17
【總結(jié)】三角函數(shù)的誘導(dǎo)公式的教學(xué)設(shè)計(jì)一、指導(dǎo)思想與理論依據(jù)數(shù)學(xué)是一門培養(yǎng)人的思維,發(fā)展人的思維的重要學(xué)科。因此,在教學(xué)中,不僅要使學(xué)生“知其然”而且要使學(xué)生“知其所以然”。所以在學(xué)生為主體,教師為主導(dǎo)的原則下,要充分揭示獲取知識(shí)和方法的思維過程。因此本節(jié)課我以建構(gòu)主義的“創(chuàng)設(shè)問題情境——提出數(shù)學(xué)問題——嘗試解決問題——驗(yàn)
【總結(jié)】§(課前預(yù)習(xí)案)班級(jí):___姓名:________編寫:一、新知導(dǎo)學(xué)sin2?=sin(?+?)=cos2?=cos(?+?)==cos2?-sin2?==tan
2024-11-27 23:35
【總結(jié)】?2?2??2?3???2??3??Oy11?§余弦、正切函數(shù)的圖象與性質(zhì)(課前預(yù)習(xí)案)班級(jí):___姓名:________編寫:一、新知導(dǎo)學(xué)y=cosx=sin(____)(xR?)可知,余弦函數(shù)y=cosx圖象與正弦函數(shù)
【總結(jié)】三角函數(shù)的誘導(dǎo)公式(2)【學(xué)習(xí)目標(biāo)】1、能進(jìn)一步運(yùn)用誘導(dǎo)公式求出任意角的三角函數(shù)值2、能通過公式的運(yùn)用,了解未知到已知、復(fù)雜到簡單的轉(zhuǎn)化過程3、進(jìn)一步準(zhǔn)確記憶并理解誘導(dǎo)公式,靈活運(yùn)用誘導(dǎo)公式求值??谠E:奇變偶不變,符號(hào)看象限【重點(diǎn)難點(diǎn)】誘導(dǎo)公式的推導(dǎo)和應(yīng)用【自主學(xué)習(xí)】1、復(fù)習(xí)四組誘導(dǎo)公式:函
【總結(jié)】?學(xué)習(xí)目標(biāo)能從兩角和與差的正、余弦公式推導(dǎo)出積化和差、和差化積公式;能綜合運(yùn)用和、差與倍角的三角公式進(jìn)行恒等變換,體會(huì)化歸思想在解題中的應(yīng)用。?引引入入新新課課1、復(fù)習(xí)公式??)cos(??_________
【總結(jié)】單位圓與三角函數(shù)線教學(xué)目標(biāo):1.知識(shí)與技能:使學(xué)生掌握如何利用單位圓中的有向線段分別表示任意角的正弦、余弦、正切函數(shù)值,并能利用三角函數(shù)線解決一些簡單的三角函數(shù)問題.2.過程與方法:借助幾何畫板讓學(xué)生經(jīng)歷概念的形成過程,提高學(xué)生觀察、發(fā)現(xiàn)、類比、猜想和實(shí)驗(yàn)探索的能力;在論壇上開展研究性學(xué)習(xí),讓學(xué)生借助所學(xué)知識(shí)自己去發(fā)現(xiàn)新問題,并加以解決
【總結(jié)】三角函數(shù)的定義一、教學(xué)目標(biāo)(1)理解并掌握任意角三角函數(shù)的定義,了解終邊相同的角的同一三角函數(shù)值相等;(2)掌握三角函數(shù)(正弦、余弦、正切)的定義域;(3)熟記三角函數(shù)在各象限的符號(hào).(1)培養(yǎng)學(xué)生應(yīng)用圖形分析數(shù)學(xué)問題的能力;(2)通過對(duì)任意角三角函數(shù)的定義的探究,培養(yǎng)學(xué)生自主探究、合作交流的能力;