【總結(jié)】雙基達(dá)標(biāo)?限時(shí)20分鐘?1.計(jì)算sin(-1380°)的值為().A.-12C.-32D.32解析sin(1380°)=sin[60°+(-4)×360°]=sin60°=32.答案
2024-11-27 23:51
【總結(jié)】三角函數(shù)的圖像與性質(zhì)(1)復(fù)習(xí)學(xué)習(xí)目標(biāo)1.能畫(huà)出y=sinx,y=cosx,y=tanx的圖像,了解三角函數(shù)的周期性.2.
2024-11-18 16:44
【總結(jié)】雙基達(dá)標(biāo)?限時(shí)20分鐘?1.下列敘述錯(cuò)誤的是().A.a(chǎn)rctana表示一個(gè)??????-π2,π2內(nèi)的角B.若x=arcsina,則sinx=aC.若tanx2=a,則x=arctan2aD.a(chǎn)rcsina、arccosa中的a∈[-1,1]答案C2.若α
2024-11-27 23:47
【總結(jié)】三角函數(shù)的圖像與性質(zhì)(2)學(xué)習(xí)目標(biāo)1、能畫(huà)出函數(shù)y=Asin(ωx+φ)的圖像;了解參數(shù)A,ω,φ對(duì)函數(shù)圖像變化的影響.并且能夠根據(jù)給出的部分圖像求三角函數(shù)解析式2、掌握函數(shù)y=Asin(ωx+φ)的三種圖像變換,并能解決圖像變換的有關(guān)問(wèn)題3、了解三
【總結(jié)】《余弦函數(shù)的圖象和性質(zhì)》教學(xué)設(shè)計(jì)一、教材分析本節(jié)選自人教B版普通高中課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書(shū)必修四第一章第三單元第二節(jié)。本節(jié)余弦函數(shù)圖像可根據(jù)誘導(dǎo)公式cossin()2xx???,通過(guò)對(duì)正弦函數(shù)圖象的平移得到。因此,余弦函數(shù)的圖象和性質(zhì)既是正弦函數(shù)圖象和性質(zhì)的轉(zhuǎn)化與鞏固,又是余弦型函數(shù)的基礎(chǔ)。因此,學(xué)好這節(jié)課不僅可以為我們今后學(xué)習(xí)正切、余切函
【總結(jié)】誘導(dǎo)公式(一)一、學(xué)習(xí)目標(biāo)1.通過(guò)本節(jié)內(nèi)容的教學(xué),使學(xué)生掌握?+?k2,-?角的正弦、余弦和正切的誘導(dǎo)公式及其探求思路,并能正確地運(yùn)用這些公式進(jìn)行任意角的正弦、余弦和正切值的求解、簡(jiǎn)單三角函數(shù)式的化簡(jiǎn)與三角恒等式的證明;2.通過(guò)公式的應(yīng)用,培養(yǎng)學(xué)生的化歸思想,以及信息加工能力、運(yùn)算推理能力、分析問(wèn)題和解決問(wèn)題的能力;二、教學(xué)重點(diǎn)、
2024-11-18 16:46
【總結(jié)】§同角三角函數(shù)的基本關(guān)系式(課前預(yù)習(xí)案)班級(jí):___姓名:________編寫(xiě):一、新知導(dǎo)學(xué)同角三角函數(shù)關(guān)系式:(1)平方關(guān)系:;(2)商數(shù)關(guān)系:.二、課前自測(cè):(1)22(cos30)(sin30
【總結(jié)】余弦函數(shù)、正切函數(shù)的圖象與性質(zhì)一、教學(xué)目標(biāo)1、知識(shí)目標(biāo)(1)理解余弦函數(shù)的圖象與性質(zhì)(2)理解正切函數(shù)的圖象與性質(zhì)2、能力目標(biāo)(1)引導(dǎo)學(xué)生自己由所學(xué)的知識(shí)推導(dǎo)未知的知識(shí),根據(jù)正弦函數(shù)的圖象、誘導(dǎo)公式推導(dǎo)出余弦函數(shù)的圖象,并自己總結(jié)其性質(zhì)(2)引導(dǎo)學(xué)生仿照對(duì)正弦函數(shù)的研究,自己利用三角函數(shù)線得出正切函數(shù)
2024-11-18 16:45
【總結(jié)】一、選擇題1.已知sinα=-13,-π2<α<0,則α等于()A.π-arcsin(-13)B.π+arcsin(-13)C.a(chǎn)rcsin(-13)D.-arcsin(-13)【解析】-π2<α<0,sinα=-13,所以α=arcsin(-13).【答案】C
【總結(jié)】任意角的三角函數(shù)一、教學(xué)目標(biāo)1、知識(shí)目標(biāo):借助單位圓理解任意角的三角函數(shù)(正弦、余弦、正切)的定義,根據(jù)定義探討出三角函數(shù)值在各個(gè)象限的符號(hào),掌握同一個(gè)角的不同三角函數(shù)之間的關(guān)系。2、能力目標(biāo):能應(yīng)用任意角的三角函數(shù)定義求任意角的三角函數(shù)值。3、情感目標(biāo):培養(yǎng)數(shù)形結(jié)合的思想。二、教材分析1、教學(xué)重點(diǎn):理解任意角三角函數(shù)(正弦、余弦、正切)的定義。2、教學(xué)難點(diǎn):從函
2025-04-17 12:39
【總結(jié)】課題:同角三角函數(shù)關(guān)系班級(jí):姓名:【學(xué)習(xí)目標(biāo)】,并體會(huì)它們?cè)谌呛瘮?shù)式的化簡(jiǎn)、求值和三角恒等式證明中的應(yīng)用?!菊n前預(yù)習(xí)】1、角?的終邊經(jīng)過(guò)點(diǎn)(4,3)(0)Paaa??,求?sin和?cos的值。2、你能
2024-12-05 10:17
【總結(jié)】3.3三角函數(shù)的積化和差與和差化積一。學(xué)習(xí)要點(diǎn):積化和差與和差化積公式及其簡(jiǎn)單應(yīng)用。二。學(xué)習(xí)過(guò)程:1.積化和差公式2.和差化積公式例1:1。把cos3cos???化成積的形式.2。把1sincos????化成積的形式例2:已知
2024-11-27 23:35
【總結(jié)】第一章一、選擇題1.已知α是第四象限角,cosα=1213,則sinα=()A.513B.-513C.512D.-512[答案]B[解析]∵α是第四象限角,cosα=1213,∴sinα=-1-cos2α=-1-?1213?2=-513.2.下列說(shuō)法中,可能成
2024-11-27 23:50
【總結(jié)】山東瀚海書(shū)業(yè)有限公司出品瀚海導(dǎo)與練成功永相伴T(mén)HEEND
2025-06-12 18:42
【總結(jié)】正弦型函數(shù)的圖象課堂教學(xué)設(shè)計(jì)教學(xué)目標(biāo)1、初步認(rèn)識(shí)振幅、周期、頻率、初相的概念,認(rèn)識(shí)正弦型函數(shù);2、會(huì)“五點(diǎn)作圖”作正弦型函數(shù)的圖象。例:、y=2sinx、y=sinx、、、等;3、能夠認(rèn)識(shí)以上這些函數(shù)與正弦函數(shù)圖象的關(guān)系,即它們是如何通過(guò)正弦函數(shù)圖象平移、伸縮而得到;4、明確的物理意義,把數(shù)學(xué)知